Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines (original) (raw)

References

  1. Warnock, R.A., Askari, S., Butcher, E.C. & von Andrian, U.H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).
    Article CAS Google Scholar
  2. Shimaoka, M., Takagi, J. & Springer, T.A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002).
    Article CAS Google Scholar
  3. Carman, C.V. & Springer, T.A. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547–556 (2003).
    Article CAS Google Scholar
  4. Salas, A. et al. Rolling adhesion through an extended conformation of integrin αLβ2 and relation to αI and βI-like domain interaction. Immunity 20, 393–406 (2004).
    Article CAS Google Scholar
  5. Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759–769 (2000).
    Article CAS Google Scholar
  6. Stein, J.V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, Exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).
    Article CAS Google Scholar
  7. Campbell, J.J., Hedrick, J., Zlotnik, A., Siani, M.A. & Thompson, D.A. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–384 (1998).
    Article CAS Google Scholar
  8. Sasaki, K., Okouchi, Y., Rothkotter, H.J. & Pabst, R. Ultrastructural localization of the intercellular adhesion molecule (ICAM-1) on the cell surface of high endothelial venules in lymph nodes. Anat. Rec. 244, 105–111 (1996).
    Article CAS Google Scholar
  9. Beals, C.R., Edwards, A.C., Gottschalk, R.J., Kuijpers, T.W. & Staunton, D.E. CD18 activation epitopes induced by leukocyte activation. J. Immunol. 167, 6113–6122 (2001).
    Article CAS Google Scholar
  10. Lum, A.F., Green, C.E., Lee, G.R., Staunton, D.E. & Simon, S.I. Dynamic regulation of LFA-1 activation and neutrophil arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow. J. Biol. Chem. 277, 20660–20670 (2002).
    Article CAS Google Scholar
  11. Beglova, N., Blacklow, S.C., Takagi, J. & Springer, T.A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat. Struct. Biol. 9, 282–287 (2002).
    Article CAS Google Scholar
  12. Xie, C. et al. The integrin α-subunit leg extends at a Ca2+-dependent epitope in the thigh/genu interface upon activation. Proc. Natl. Acad. Sci. USA 101, 15422–15427 (2004).
    Article CAS Google Scholar
  13. Kucik, D.F., Dustin, M.L., Miller, J.M. & Brown, E.J. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest. 97, 2139–2144 (1996).
    Article CAS Google Scholar
  14. Lub, M., van Kooyk, Y., van Vliet, S.J. & Figdor, C.G. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1. Mol. Biol. Cell 8, 341–351 (1997).
    Article CAS Google Scholar
  15. Kim, M., Carman, C.V., Yang, W., Salas, A. & Springer, T.A. The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2 . J. Cell Biol. 167, 1241–1253 (2004).
    Article CAS Google Scholar
  16. Alon, R. & Feigelson, S. From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin. Immunol. 14, 93–104 (2002).
    Article CAS Google Scholar
  17. Zhang, N., Hodge, D., Rogers, T.J. & Oppenheim, J.J. Ca2+-independent protein kinase Cs mediate heterologous desensitization of leukocyte chemokine receptors by opioid receptors. J. Biol. Chem. 278, 12729–12736 (2003).
    Article CAS Google Scholar
  18. Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003).
    Article CAS Google Scholar
  19. Huth, J.R. et al. NMR and mutagenesis evidence for an I domain allosteric site that regulates lymphocyte function-associated antigen 1 ligand binding. Proc. Natl. Acad. Sci. USA 97, 5231–5236 (2000).
    Article CAS Google Scholar
  20. Kim, M., Carman, C.V. & Springer, T.A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003).
    Article CAS Google Scholar
  21. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).
    Article CAS Google Scholar
  22. Monkley, S.J., Pritchard, C.A. & Critchley, D.R. Analysis of the mammalian talin2 gene TLN2. Biochem. Biophys. Res. Commun. 286, 880–885 (2001).
    Article CAS Google Scholar
  23. Jung, U., Norman, K.E., Scharffetter-Kochanek, K., Beaudet, A.L. & Ley, K. Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J. Clin. Invest. 102, 1526–1533 (1998).
    Article CAS Google Scholar
  24. Ley, K., Allietta, M., Bullard, D.C. & Morgan, S. The importance of E-selectin for firm leukocyte adhesion in vivo. Circ. Res. 83, 287–294 (1998).
    Article CAS Google Scholar
  25. Dustin, M.L., Bivona, T.G. & Philips, M.R. Membranes as messengers in T cell adhesion signaling. Nat. Immunol. 5, 363–372 (2004).
    Article CAS Google Scholar
  26. Grabovsky, V., Dwir, O. & Alon, R. Endothelial chemokines destabilize L-selectin-mediated lymphocyte rolling without inducing selectin shedding. J. Biol. Chem. 277, 20640–20650 (2002).
    Article CAS Google Scholar
  27. Shamri, R. et al. Chemokine-stimulation of lymphocyte α4 integrin avidity but not of LFA-1 avidity to endothelial ligands under shear flow requires cholesterol membrane rafts. J. Biol. Chem. 277, 40027–40035 (2002).
    Article CAS Google Scholar
  28. Finger, E.B., Bruehl, R.E., Bainton, D.F. & Springer, T.A. A differential role for cell shape in neutrophil tethering and rolling on endothelial selectins under flow. J. Immunol. 157, 5085–5096 (1996).
    CAS Google Scholar
  29. Abitorabi, M.A., Pachynski, R.K., Ferrando, R.E., Tidswell, M. & Erle, D.J. Presentation of integrins on leukocyte microvilli: a role for the extracellular domain in determining membrane localization. J. Cell Biol. 139, 563–571 (1997).
    Article CAS Google Scholar
  30. Sampath, R., Gallagher, P.J. & Pavalko, F.M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. Activation-dependent regulation of associations with talin and α-actinin. J. Biol. Chem. 273, 33588–33594 (1998).
    Article CAS Google Scholar
  31. Yan, B., Calderwood, D.A., Yaspan, B. & Ginsberg, M.H. Calpain cleavage promotes talin binding to the β3 integrin cytoplasmic domain. J. Biol. Chem. 276, 28164–28170 (2001).
    Article CAS Google Scholar
  32. Pfaff, M., Liu, S., Erle, D.J. & Ginsberg, M.H. Integrin β cytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem. 273, 6104–6109 (1998).
    Article CAS Google Scholar
  33. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat. Immunol. 4, 741–748 (2003).
    Article CAS Google Scholar
  34. Giagulli, C. et al. RhoA and ζ PKC control distinct modalities of LFA-1 activation by chemokines critical role of LFA-1 affinity triggering in lymphocyte in vivo homing. Immunity 20, 25–35 (2004).
    Article CAS Google Scholar
  35. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).
    Article CAS Google Scholar
  36. Alon, R. et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 101, 4437–4445 (2003).
    Article CAS Google Scholar
  37. Kinashi, T. et al. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood 103, 1033–1036 (2004).
    Article CAS Google Scholar
  38. Lupher, M.L., Jr et al. Cellular activation of leukocyte function-associated antigen-1 and its affinity are regulated at the I domain allosteric site. J. Immunol. 167, 1431–1439 (2001).
    Article CAS Google Scholar
  39. Li, R. et al. Activation of integrin αIIβ3 by modulation of transmembrane helix associations. Science 300, 795–798 (2003).
    Article CAS Google Scholar
  40. Huang, C. & Springer, T.A. A binding interface on the I domain of lymphocyte function-associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1). J. Biol. Chem. 270, 19008–19116 (1995).
    Article CAS Google Scholar
  41. Cabanas, C. & Hogg, N. Ligand intercellular adhesion molecule 1 has a necessary role in activation of integrin lymphocyte function-associated molecule 1. Proc. Natl. Acad. Sci. USA 90, 5838–5842 (1993).
    Article CAS Google Scholar
  42. van Kooyk, Y. et al. Activation of LFA-1 through a Ca2+-dependent epitope stimulates lymphocyte adhesion. J. Cell Biol. 112, 345–354 (1991).
    Article CAS Google Scholar
  43. Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines enhances leukocyte capture and rolling under flow prior to firm adhesion to endothelium. J. Exp. Med. 192, 495–505 (2000).
    Article CAS Google Scholar
  44. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat. Immunol. 2, 515–522 (2001).
    Article CAS Google Scholar
  45. Maly, P. et al. The Fuc-TVII α1,3 fucosyltransferase controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).
    Article CAS Google Scholar
  46. Gauguet, J.M., Rosen, S.D., Marth, J.D. & Von Andrian, U.H. Core 2 branching β1,6-N-acetylglucosaminyltransferase and high endothelial cell N-acetylglucosamine-6-sulfotransferase exert differential control over B and T lymphocyte homing to peripheral lymph nodes. Blood 104, 4104–4112 (2004).
    Article CAS Google Scholar
  47. Pries, A.R. A versatile video image analysis system for microcirculatory research. Int. J. Microcirc. Clin. Exp. 7, 327–345 (1988).
    CAS Google Scholar
  48. M'Rini, C. et al. A novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by α1,3-fucosyltransferase-IV. J. Exp. Med. 198, 1301–1312 (2003).
    Article CAS Google Scholar
  49. Sigal, A. et al. The LFA-1 integrin supports rolling adhesions on ICAM-1 under physiological shear flow in a permissive cellular environment. J. Immunol. 165, 442–452 (2000).
    Article CAS Google Scholar

Download references