Lipid rafts: now you see them, now you don't (original) (raw)

References

  1. Yu, J., Fischman, D.A. & Steck, T.L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J. Supramol. Struct. 1, 233–248 (1973).
    Article CAS PubMed Google Scholar
  2. Ben-Ze'ev, A., Duerr, A., Solomon, F. & Penman, S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell 17, 859–865 (1979).
    Article CAS PubMed Google Scholar
  3. Hooper, N.M. & Turner, A.J. Ectoenzymes of the kidney microvillar membrane. Differential solubilization by detergents can predict a glycosyl-phosphatidylinositol membrane anchor. Biochem. J. 250, 865–869 (1988).
    Article CAS PubMed Central PubMed Google Scholar
  4. van Meer, G. & Simons, K. Viruses budding from either the apical or the basolateral plasma membrane domain of MDCK cells have unique phospholipid compositions. EMBO J. 1, 847–852 (1982).
    Article CAS PubMed Central PubMed Google Scholar
  5. Brown, D.A. & Rose, J.K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992).
    Article CAS PubMed Google Scholar
  6. Brown, D.A., Crise, B. & Rose, J.K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245, 1499–1501 (1989).
    Article CAS PubMed Google Scholar
  7. Hanada, K., Nishijima, M., Akamatsu, Y. & Pagano, R.E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J. Biol. Chem. 270, 6254–6260 (1995).
    Article CAS PubMed Google Scholar
  8. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).
    Article CAS PubMed Google Scholar
  9. Radhakrishnan, A. & McConnell, H.M. Condensed complexes of cholesterol and phospholipids. Biophys. J. 77, 1507–1517 (1999).
    Article CAS PubMed Central PubMed Google Scholar
  10. Brown, D.A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).
    Article CAS PubMed Google Scholar
  11. Shenoy-Scaria, A.M., Dietzen, D.J., Kwong, J., Link, D.C. & Lublin, D.M. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J. Cell Biol. 126, 353–363 (1994).
    Article CAS PubMed Google Scholar
  12. Stefanova, I., Horejsi, V., Ansotegui, I.J., Knapp, W. & Stockinger, H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–1019 (1991).
    Article CAS PubMed Google Scholar
  13. Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).
    Article CAS PubMed Google Scholar
  14. Geppert, T.D. & Lipsky, P.E. Association of various T cell-surface molecules with the cytoskeleton. Effect of cross-linking and activation. J. Immunol. 146, 3298–3305 (1991).
    CAS PubMed Google Scholar
  15. Rozdzial, M.M., Malissen, B. & Finkel, T.H. Tyrosine-phosphorylated T cell receptor zeta chain associates with the actin cytoskeleton upon activation of mature T lymphocytes. Immunity 3, 623–633 (1995).
    Article CAS PubMed Google Scholar
  16. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).
    Article CAS PubMed Google Scholar
  17. Pierce, S.K. To cluster or not to cluster: FRETting over rafts. Nat. Cell Biol. 6, 180–181 (2004).
    Article CAS PubMed Google Scholar
  18. Giocondi, M.C., Vie, V., Lesniewska, E., Goudonnet, J.P. & Le Grimellec, C. In situ imaging of detergent-resistant membranes by atomic force microscopy. J. Struct. Biol. 131, 38–43 (2000).
    Article CAS PubMed Google Scholar
  19. Pizzo, P. et al. Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur. J. Immunol. 32, 3082–3091 (2002).
    Article CAS PubMed Google Scholar
  20. Hao, M., Mukherjee, S. & Maxfield, F.R. Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc. Natl. Acad. Sci. USA 98, 13072–13077 (2001).
    Article CAS PubMed Central PubMed Google Scholar
  21. Ahmed, S.N., Brown, D.A. & London, E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36, 10944–10953 (1997).
    Article CAS PubMed Google Scholar
  22. Maxfield, F.R. & Mayor, S. Cell surface dynamics of GPI-anchored proteins. Adv. Exp. Med. Biol. 419, 355–364 (1997).
    Article CAS PubMed Google Scholar
  23. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).
    Article CAS PubMed Google Scholar
  24. Kenworthy, A.K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).
    Article CAS PubMed Central PubMed Google Scholar
  25. Hancock, J.F. Lipid rafts: contentious only from simplistic standpoints. Nat. Rev. Mol. Cell. Biol. 7, 456–462 (2006).
    Article CAS PubMed Central PubMed Google Scholar
  26. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).
    Article CAS PubMed Google Scholar
  27. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).
    Article CAS PubMed Google Scholar
  28. Prior, I.A., Muncke, C., Parton, R.G. & Hancock, J.F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).
    Article CAS PubMed Central PubMed Google Scholar
  29. Kawasaki, K., Yin, J.J., Subczynski, W.K., Hyde, J.S. & Kusumi, A. Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys. J. 80, 738–748 (2001).
    Article CAS PubMed Central PubMed Google Scholar
  30. Kusumi, A., Koyama-Honda, I. & Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5, 213–230 (2004).
    Article CAS PubMed Google Scholar
  31. Kenworthy, A.K., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655 (2000).
    Article CAS PubMed Central PubMed Google Scholar
  32. Housden, H.R. et al. Investigation of the kinetics and order of tyrosine phosphorylation in the T-cell receptor ζ chain by the protein tyrosine kinase Lck. Eur. J. Biochem. FEBS 270, 2369–2376 (2003).
    Article CAS Google Scholar
  33. Amarasinghe, G.K. & Rosen, M.K. Acidic region tyrosines provide access points for allosteric activation of the autoinhibited Vav1 Dbl homology domain. Biochemistry 44, 15257–15268 (2005).
    Article CAS PubMed Google Scholar
  34. Bu, J.Y., Shaw, A.S. & Chan, A.C. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc. Natl. Acad. Sci. USA 92, 5106–5110 (1995).
    Article CAS PubMed Central PubMed Google Scholar
  35. Almeida, P.F., Pokorny, A. & Hinderliter, A. Thermodynamics of membrane domains. Biochim. Biophys. Acta 1720, 1–13 (2005).
    Article CAS PubMed Google Scholar
  36. Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W. & Harder, T. Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131 (2005).
    Article CAS PubMed Central PubMed Google Scholar
  37. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).
    Article CAS PubMed Central PubMed Google Scholar
  38. Larson, D.R., Gosse, J.A., Holowka, D.A., Baird, B.A. & Webb, W.W. Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J. Cell Biol. 171, 527–536 (2005).
    Article CAS PubMed Central PubMed Google Scholar
  39. Burack, W.R., Lee, K.H., Holdorf, A.D., Dustin, M.L. & Shaw, A.S. Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J. Immunol. 169, 2837–2841 (2002).
    Article CAS PubMed Google Scholar
  40. Pike, L.J. Rafts defined. J. Lipid Res. 47, 1597–1598 (2006).
    Article CAS PubMed Google Scholar

Download references