Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells (original) (raw)
Thomas, E.D. et al. One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood49, 511–533 (1977). CASPubMed Google Scholar
Storb, R., Prentice, R.L. & Thomas, E.D. Marrow transplantation for treatment of aplastic anemia. An analysis of factors associated with graft rejection. N. Engl. J. Med.296, 61–66 (1977). ArticleCASPubMed Google Scholar
Gale, R.P. et al. Prevention of graft rejection following bone marrow transplantation. Blood57, 9–12 (1981). CASPubMed Google Scholar
Suda, T., Arai, F. & Hirao, A. Hematopoietic stem cells and their niche. Trends Immunol.26, 426–433 (2005). ArticleCASPubMed Google Scholar
Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood106, 1901–1910 (2005). ArticleCASPubMed Google Scholar
Murphy, W.J., Kumar, V. & Bennett, M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J. Exp. Med.165, 1212–1217 (1987). ArticleCASPubMed Google Scholar
McKenzie, J.L., Gan, O.I., Doedens, M. & Dick, J.E. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood106, 1259–1261 (2005). ArticleCASPubMed Google Scholar
Wang, J.C.Y. et al. In Hematopoiesis—A Developmental Approach (ed. Zon, L.I.) 99–118 (Oxford University Press, New York, 2001). Google Scholar
Dorshkind, K., Pollack, S.B., Bosma, M.J. & Phillips, R.A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J. Immunol.134, 3798–3801 (1985). CASPubMed Google Scholar
Shultz, L.D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol.154, 180–191 (1995). CASPubMed Google Scholar
Glimm, H. et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-β2 microglobulin-null mice. J. Clin. Invest.107, 199–206 (2001). ArticleCASPubMedPubMed Central Google Scholar
Greiner, D.L. et al. Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. Am. J. Pathol.146, 888–902 (1995). CASPubMedPubMed Central Google Scholar
Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat. Med.2, 1329–1337 (1996). ArticleCASPubMed Google Scholar
O'Brien, B.A., Huang, Y., Geng, X., Dutz, J.P. & Finegood, D.T. Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes51, 2481–2488 (2002). ArticleCASPubMed Google Scholar
Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity18, 41–51 (2003). ArticleCASPubMed Google Scholar
Piganelli, J.D., Martin, T. & Haskins, K. Splenic macrophages from the NOD mouse are defective in the ability to present antigen. Diabetes47, 1212–1218 (1998). ArticleCASPubMed Google Scholar
Anderson, M.S. & Bluestone, J.A. The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol.23, 447–485 (2005). ArticleCASPubMed Google Scholar
Acha-Orbea, H. & McDevitt, H.O. The first external domain of the nonobese diabetic mouse class II I-A β chain is unique. Proc. Natl. Acad. Sci. USA84, 2435–2439 (1987). ArticleCASPubMedPubMed Central Google Scholar
Kissler, S. et al. In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nat. Genet.38, 479–483 (2006). ArticleCASPubMed Google Scholar
Vijayakrishnan, L. et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity20, 563–575 (2004). ArticleCASPubMed Google Scholar
Yamanouchi, J. et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat. Genet.39, 329–337 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell68, 855–867 (1992). ArticleCASPubMed Google Scholar
Zijlstra, M. β2-microglobulin deficient mice lack CD4−8+ cytolytic T cells. Nature344, 742–746 (1990). ArticleCASPubMed Google Scholar
Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature369, 31–37 (1994). ArticleCASPubMed Google Scholar
Shultz, L.D. et al. NOD/LtSz-Rag1null mice: an immunodeficient and radioresistant model for engraftment of human hematolymphoid cells, HIV infection, and adoptive transfer of NOD mouse diabetogenic T cells. J. Immunol.164, 2496–2507 (2000). ArticleCASPubMed Google Scholar
Prochazka, M., Serreze, D.V., Frankel, W.N. & Leiter, E.H. NOR/Lt mice: MHC-matched diabetes-resistant control strain for NOD mice. Diabetes41, 98–106 (1992). ArticleCASPubMed Google Scholar
Serreze, D.V., Prochazka, M., Reifsnyder, P.C., Bridgett, M.M. & Leiter, E.H. Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J. Exp. Med.180, 1553–1558 (1994). ArticleCASPubMed Google Scholar
Barclay, A.N. & Brown, M.H. The SIRP family of receptors and immune regulation. Nat. Rev. Immunol.6, 457–464 (2006). ArticleCASPubMed Google Scholar
van den Nieuwenhof, I.M., Renardel de Lavalette, C., Diaz, N., van Die, I. & van den Berg, T.K. Differential galactosylation of neuronal and haematopoietic signal regulatory protein-α determines its cellular binding-specificity. J. Cell Sci.114, 1321–1329 (2001). CASPubMed Google Scholar
Seiffert, M. et al. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood94, 3633–3643 (1999). CASPubMed Google Scholar
Seiffert, M. et al. Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38− hematopoietic cells. Blood97, 2741–2749 (2001). ArticleCASPubMed Google Scholar
Vernon-Wilson, E.F. et al. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPα1. Eur. J. Immunol.30, 2130–2137 (2000). CASPubMed Google Scholar
Hatherley, D., Harlos, K., Dunlop, D.C., Stuart, D.I. & Barclay, A.N. The structure of the macrophage signal regulatory protein α (SIRPα) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors. J. Biol. Chem.282, 14567–14575 (2007). ArticleCASPubMed Google Scholar
Veillette, A., Thibaudeau, E. & Latour, S. High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages. J. Biol. Chem.273, 22719–22728 (1998). ArticleCASPubMed Google Scholar
Oldenborg, P.A., Gresham, H.D. & Lindberg, F.P. CD47-signal regulatory protein α (SIRPα) regulates Fcγ and complement receptor-mediated phagocytosis. J. Exp. Med.193, 855–862 (2001). ArticleCASPubMedPubMed Central Google Scholar
Blazar, B.R. et al. CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J. Exp. Med.194, 541–549 (2001). ArticleCASPubMedPubMed Central Google Scholar
Smith, R.E. et al. A novel MyD-1 (SIRP-1α) signaling pathway that inhibits LPS-induced TNFα production by monocytes. Blood102, 2532–2540 (2003). ArticleCASPubMed Google Scholar
Alblas, J. et al. Signal regulatory protein α ligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/NAPDH oxidase/H2O2-dependent pathways. Mol. Cell. Biol.25, 7181–7192 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shultz, L.D. et al. Regulation of human short-term repopulating cell (STRC) engraftment in NOD/SCID mice by host CD122+ cells. Exp. Hematol.31, 551–558 (2003). ArticlePubMed Google Scholar
Hauser, S.P., Waldron, J.A., Upuda, K.B. & Lipschitz, D.A. Morphological characterization of stromal cell types in hematopoietically active long-term murine bone marrow cultures. J. Histochem. Cytochem.43, 371–379 (1995). ArticleCASPubMed Google Scholar
Issaad, C., Croisille, L., Katz, A., Vainchenker, W. & Coulombel, L. A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38− progenitor cells in long-term cultures and semisolid assays. Blood81, 2916–2924 (1993). CASPubMed Google Scholar
Subramanian, S., Parthasarathy, R., Sen, S., Boder, E.T. & Discher, D.E. Species- and cell type-specific interactions between CD47 and human SIRPα. Blood107, 2548–2556 (2006). ArticleCASPubMedPubMed Central Google Scholar
Latour, S. et al. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J. Immunol.167, 2547–2554 (2001). ArticleCASPubMed Google Scholar
Brown, E.J. & Frazier, W.A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol.11, 130–135 (2001). ArticleCASPubMed Google Scholar
Oldenborg, P.A. et al. Role of CD47 as a marker of self on red blood cells. Science288, 2051–2054 (2000). ArticleCASPubMed Google Scholar
Gardai, S.J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell123, 321–334 (2005). ArticleCASPubMed Google Scholar
Pozzilli, P., Signore, A., Williams, A.J. & Beales, P.E. NOD mouse colonies around the world—recent facts and figures. Immunol. Today14, 193–196 (1993). ArticleCASPubMed Google Scholar
Gan, O.I. et al. Characterization and retroviral transduction of an early human lymphomyeloid precursor assayed in nonswitched long-term culture on murine stroma. Exp. Hematol.27, 1097–1106 (1999). ArticleCASPubMed Google Scholar
Guenechea, G. et al. Transduction of human CD34+ CD38− bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol. Ther.1, 566–573 (2000). ArticleCASPubMed Google Scholar