Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections (original) (raw)
References
Janeway, C. A. Jr Inaugural article: How the immune system works to protect the host from infection: A personal view. Proc. Natl Acad. Sci. USA98, 7461–7468 (2001). ArticleCASPubMedPubMed Central Google Scholar
Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol.2, 947–950 (2001). ArticleCAS Google Scholar
Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science284, 1313–1318 (1999). ArticleCASPubMed Google Scholar
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. & Hoffmann, J. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell86, 973–983 (1996). ArticleCASPubMed Google Scholar
Lemaitre, B., Reichhart, J. & Hoffmann, J. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA94, 14614–14619 (1997). ArticleCASPubMedPubMed Central Google Scholar
Levashina, E. A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science285, 1917–1919 (1999). ArticleCASPubMed Google Scholar
Nicolas, E., Reichhart, J., Hoffmann, J. & Lemaitre, B. In vivo regulation of the IκB homologue cactus during the immune response of Drosophila. J. Biol. Chem.273, 10463–10469 (1998). ArticleCASPubMed Google Scholar
Rutschmann, S. et al. The Rel protein DIF mediates the Toll-dependent antifungal response in Drosophila. Immunity12, 569–580 (2000). ArticleCASPubMed Google Scholar
Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor–mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev.13, 792–797 (1999). ArticleCASPubMedPubMed Central Google Scholar
Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J.18, 3380–3391 (1999). ArticleCASPubMedPubMed Central Google Scholar
Khush, R. S., Leulier, F. & Lemaitre, B. Drosophila immunity: two paths to NF-κB. Trends Immunol.22, 260–264 (2001). ArticleCASPubMed Google Scholar
Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388, 394–397 (1997). ArticleCASPubMed Google Scholar
Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol.2, 675–680 (2001). ArticleCAS Google Scholar
Imler, J. & Hoffmann, J. A. Toll receptors in innate immunity. Trends Cell Biol.11, 304–311 (2001). ArticleCASPubMed Google Scholar
Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell2, 253–258 (1998). ArticleCASPubMed Google Scholar
Muzio, M., Ni, J., Feng, P. & Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL- 1 signaling. Science278, 1612–1615 (1997). ArticleCASPubMed Google Scholar
Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity7, 837–847 (1997). ArticleCASPubMed Google Scholar
Takeuchi, O. et al. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol.12, 113–117 (2000). ArticleCASPubMed Google Scholar
Galindo, R. L., Edwards, D. N., Gillespie, S. K. & Wasserman, S. A. Interaction of the pelle kinase with the membrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos. Development121, 2209–2218 (1995). CASPubMed Google Scholar
Shen, B. & Manley, J. L. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development125, 4719–4728 (1998). CASPubMed Google Scholar
Wasserman, S. A. Toll signaling: the enigma variations. Curr. Opin. Genet. Dev.10, 497–502 (2000). ArticleCASPubMed Google Scholar
Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature408, 111–115 (2000). ArticleCASPubMed Google Scholar
Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA97, 10520–10525 (2000). ArticleCASPubMedPubMed Central Google Scholar
Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA97, 6499–6503 (2000). ArticleCASPubMedPubMed Central Google Scholar
Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates the antibacterial response and can promote apoptosis. Dev. Cell1, 503–514 (2001). ArticleCASPubMed Google Scholar
Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol.1, 342–347 (2000). ArticleCAS Google Scholar
Edwards, D. N., Towb, P. & Wasserman, S. A. An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development124, 3855–3864 (1997). CASPubMed Google Scholar
Hacker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor–associated factor (TRAF) 6. J. Exp. Med.192, 595–600 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity11, 115–122 (1999). ArticleCASPubMed Google Scholar
Schnare, M., Holtdagger, A. C., Takeda, K., Akira, S. & Medzhitov, R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol.10, 1139–1142 (2000). ArticleCASPubMed Google Scholar
Takeuchi, O., Hoshino, K. & Akira, S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol.165, 5392–5396 (2000). ArticleCASPubMed Google Scholar
Michel, T., Reichhart, J. M., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria via a circulating peptidoglycan recognition protein. Nature414 (in the press, 2001).
Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev15, 1900–1912 (2001). ArticleCASPubMedPubMed Central Google Scholar
Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol.10, 781–784 (2000). ArticleCASPubMed Google Scholar
Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell4, 1–20 (1999). Article Google Scholar
Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Reports1, 353–358 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev.15, 104–110 (2001). ArticleCASPubMedPubMed Central Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCASPubMed Google Scholar
Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4) [published erratum appears in J Exp Med 1999 May 3;189(9):following 1518]. J. Exp. Med.189, 615–625 (1999). Published erratum: J. Exp. Med.189, 1518 (1999). ArticleCASPubMedPubMed Central Google Scholar
Eldon, E. et al. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development120, 885–899 (1994). CASPubMed Google Scholar
Gerttula, S., Jin, Y. S. & Anderson, K. V. Zygotic expression and activity of the Drosophila Toll gene, a gene required maternally for embryonic dorsal–ventral pattern formation. Genetics119, 123–133 (1988). CASPubMedPubMed Central Google Scholar
Hashimoto, C., Hudson, K. & Anderson, K. The Toll gene of Drosophila, required for dorsal–ventral embryonic polarity, appears to encode a transmembrane protein. Cell52, 269–279 (1988). ArticleCASPubMed Google Scholar
Chiang, C. & Beachy, P. A. Expression of a novel Toll-like gene spans the parasegment boundary and contributes to hedgehog function in the adult eye of Drosophila. Mech. Dev.47, 225–239 (1994). ArticleCASPubMed Google Scholar
Du, X., Poltorak, A., Wei, Y. & Beutler, B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw.11, 362–371 (2000). CASPubMed Google Scholar
Luo, C. & Zheng, L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics51, 92–98 (2000). ArticleCASPubMed Google Scholar
Horng, T. & Medzhitov, R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl Acad. Sci. USA98, 12654–12658 (2001). ArticleCASPubMedPubMed Central Google Scholar
Krasnow, M. A., Saffman, E. E., Kornfeld, K. & Hogness, D. S. Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell57, 1031–1043 (1989). ArticleCASPubMed Google Scholar
Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401–415 (1993). CASPubMed Google Scholar
Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development125, 1049–1057 (1998). CASPubMed Google Scholar
Xiao, T., Towb, P., Wasserman, S. A. & Sprang, S. R. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell99, 545–555 (1999). ArticleCASPubMedPubMed Central Google Scholar