Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections (original) (raw)

References

  1. Janeway, C. A. Jr Inaugural article: How the immune system works to protect the host from infection: A personal view. Proc. Natl Acad. Sci. USA 98, 7461–7468 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  2. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).
    Article CAS Google Scholar
  3. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).
    Article CAS PubMed Google Scholar
  4. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. & Hoffmann, J. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).
    Article CAS PubMed Google Scholar
  5. Lemaitre, B., Reichhart, J. & Hoffmann, J. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  6. Levashina, E. A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).
    Article CAS PubMed Google Scholar
  7. Nicolas, E., Reichhart, J., Hoffmann, J. & Lemaitre, B. In vivo regulation of the IκB homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273, 10463–10469 (1998).
    Article CAS PubMed Google Scholar
  8. Rutschmann, S. et al. The Rel protein DIF mediates the Toll-dependent antifungal response in Drosophila. Immunity 12, 569–580 (2000).
    Article CAS PubMed Google Scholar
  9. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor–mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  10. Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18, 3380–3391 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  11. Khush, R. S., Leulier, F. & Lemaitre, B. Drosophila immunity: two paths to NF-κB. Trends Immunol. 22, 260–264 (2001).
    Article CAS PubMed Google Scholar
  12. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).
    Article CAS PubMed Google Scholar
  13. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).
    Article CAS Google Scholar
  14. Imler, J. & Hoffmann, J. A. Toll receptors in innate immunity. Trends Cell Biol. 11, 304–311 (2001).
    Article CAS PubMed Google Scholar
  15. Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253–258 (1998).
    Article CAS PubMed Google Scholar
  16. Muzio, M., Ni, J., Feng, P. & Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL- 1 signaling. Science 278, 1612–1615 (1997).
    Article CAS PubMed Google Scholar
  17. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).
    Article CAS PubMed Google Scholar
  18. Takeuchi, O. et al. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol. 12, 113–117 (2000).
    Article CAS PubMed Google Scholar
  19. Galindo, R. L., Edwards, D. N., Gillespie, S. K. & Wasserman, S. A. Interaction of the pelle kinase with the membrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos. Development 121, 2209–2218 (1995).
    CAS PubMed Google Scholar
  20. Shen, B. & Manley, J. L. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125, 4719–4728 (1998).
    CAS PubMed Google Scholar
  21. Wasserman, S. A. Toll signaling: the enigma variations. Curr. Opin. Genet. Dev. 10, 497–502 (2000).
    Article CAS PubMed Google Scholar
  22. Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000).
    Article CAS PubMed Google Scholar
  23. Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  24. Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  25. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates the antibacterial response and can promote apoptosis. Dev. Cell 1, 503–514 (2001).
    Article CAS PubMed Google Scholar
  26. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342–347 (2000).
    Article CAS Google Scholar
  27. Edwards, D. N., Towb, P. & Wasserman, S. A. An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124, 3855–3864 (1997).
    CAS PubMed Google Scholar
  28. Hacker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor–associated factor (TRAF) 6. J. Exp. Med. 192, 595–600 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  29. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).
    Article CAS PubMed Google Scholar
  30. Schnare, M., Holtdagger, A. C., Takeda, K., Akira, S. & Medzhitov, R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 10, 1139–1142 (2000).
    Article CAS PubMed Google Scholar
  31. Takeuchi, O., Hoshino, K. & Akira, S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165, 5392–5396 (2000).
    Article CAS PubMed Google Scholar
  32. Michel, T., Reichhart, J. M., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria via a circulating peptidoglycan recognition protein. Nature 414 (in the press, 2001).
  33. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev 15, 1900–1912 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  34. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10, 781–784 (2000).
    Article CAS PubMed Google Scholar
  35. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 1–20 (1999).
    Article Google Scholar
  36. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Reports 1, 353–358 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  37. Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  38. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).
    Article CAS PubMed Google Scholar
  39. Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4) [published erratum appears in J Exp Med 1999 May 3;189(9):following 1518]. J. Exp. Med. 189, 615–625 (1999). Published erratum: J. Exp. Med. 189, 1518 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  40. Eldon, E. et al. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development 120, 885–899 (1994).
    CAS PubMed Google Scholar
  41. Gerttula, S., Jin, Y. S. & Anderson, K. V. Zygotic expression and activity of the Drosophila Toll gene, a gene required maternally for embryonic dorsal–ventral pattern formation. Genetics 119, 123–133 (1988).
    CAS PubMed PubMed Central Google Scholar
  42. Hashimoto, C., Hudson, K. & Anderson, K. The Toll gene of Drosophila, required for dorsal–ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269–279 (1988).
    Article CAS PubMed Google Scholar
  43. Chiang, C. & Beachy, P. A. Expression of a novel Toll-like gene spans the parasegment boundary and contributes to hedgehog function in the adult eye of Drosophila. Mech. Dev. 47, 225–239 (1994).
    Article CAS PubMed Google Scholar
  44. Du, X., Poltorak, A., Wei, Y. & Beutler, B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11, 362–371 (2000).
    CAS PubMed Google Scholar
  45. Luo, C. & Zheng, L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics 51, 92–98 (2000).
    Article CAS PubMed Google Scholar
  46. Horng, T. & Medzhitov, R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl Acad. Sci. USA 98, 12654–12658 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  47. Krasnow, M. A., Saffman, E. E., Kornfeld, K. & Hogness, D. S. Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell 57, 1031–1043 (1989).
    Article CAS PubMed Google Scholar
  48. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).
    CAS PubMed Google Scholar
  49. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).
    CAS PubMed Google Scholar
  50. Xiao, T., Towb, P., Wasserman, S. A. & Sprang, S. R. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 99, 545–555 (1999).
    Article CAS PubMed PubMed Central Google Scholar

Download references