IKKε and TBK1 are essential components of the IRF3 signaling pathway (original) (raw)
Hiscott, J. et al. Triggering the interferon response: the role of IRF-3 transcription factor. J. Interferon Cytokine Res.19, 1–13 (1999). ArticleCASPubMed Google Scholar
Genin, P., Algarte, M., Roof, P., Lin, R. & Hiscott, J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-κB and IFN-regulatory factor transcription factors. J. Immunol.164, 5352–5361 (2000). ArticleCASPubMed Google Scholar
Barnes, B., Lubyova, B. & Pitha, P.M. On the role of IRF in host defense. J. Interferon Cytokine Res.22, 59–71 (2002). ArticleCASPubMed Google Scholar
Iwamura, T. et al. Induction of IRF-3/-7 kinase and NF-κB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells6, 375–388 (2001). ArticleCASPubMed Google Scholar
Yoneyama, M., Suhara, W. & Fujita, T. Control of IRF-3 activation by phosphorylation. J. Interferon Cytokine Res.22, 73–76 (2002). ArticleCASPubMed Google Scholar
Servant, M.J. et al. Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J. Biol. Chem.276, 355–363 (2001). ArticleCASPubMed Google Scholar
Servant, M.J., Grandvaux, N. & Hiscott, J. Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem. Pharmacol.64, 985–992 (2002). ArticleCASPubMed Google Scholar
tenOever, B.R., Servant, M.J., Grandvaux, N., Lin, R. & Hiscott, J. Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J. Virol.76, 3659–3669 (2002). ArticleCASPubMedPubMed Central Google Scholar
Smith, E.J., Marie, I., Prakash, A., Garcia-Sastre, A. & Levy, D.E. IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or IκB kinase but is blocked by Vaccinia virus E3L protein. J. Biol. Chem.276, 8951–8957 (2001). ArticleCASPubMed Google Scholar
Chu, W.M. et al. JNK2 and IKKβ are required for activating the innate response to viral infection. Immunity11, 721–731 (1999). ArticleCASPubMed Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663 (2000). ArticleCASPubMed Google Scholar
Iordanov, M.S., Wong, J., Bell, J.C. & Magun, B.E. Activation of NF-κB by double-stranded RNA (dsRNA) in the absence of protein kinase R and RNase L demonstrates the existence of two separate dsRNA-triggered antiviral programs. Mol. Cell. Biol.21, 61–72 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fitzgerald, K.A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature413, 78–83 (2001). ArticleCASPubMed Google Scholar
Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413, 732–738 (2001). ArticleCASPubMed Google Scholar
Janssens, S. & Beyaert, R. A universal role for MyD88 in TLR/IL-1R–mediated signaling. Trends Biochem. Sci.27, 474–482 (2002). ArticleCASPubMed Google Scholar
Cao, Z., Henzel, W.J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science271, 1128–1131 (1996). ArticleCASPubMed Google Scholar
Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat. Immunol.4, 161–167 (2003). ArticleCASPubMed Google Scholar
Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol.167, 5887–5894 (2001). ArticleCASPubMed Google Scholar
Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol.3, 392–398 (2002). ArticleCASPubMed Google Scholar
Horng, T., Barton, G.M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol.2, 835–841 (2001). ArticleCASPubMed Google Scholar
Yamamoto, M. et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature420, 324–329 (2002). ArticleCASPubMed Google Scholar
Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol.169, 6668–6672 (2002). ArticleCASPubMed Google Scholar
Imler, J.L. & Hoffmann, J.A. Toll signaling: the TIReless quest for specificity. Nat. Immunol.4, 105–106 (2003). ArticleCASPubMed Google Scholar
Peters, R.T., Liao, S.M. & Maniatis, T. IKKε is part of a novel PMA-inducible IκB kinase complex. Mol. Cell5, 513–522 (2000). ArticleCASPubMed Google Scholar
Shimada, T. et al. IKK-i, a novel lipopolysaccharide-inducible kinase that is related to IκB kinases. Int. Immunol.11, 1357–1362 (1999). ArticleCASPubMed Google Scholar
Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB–dependent gene transcription. EMBO J.19, 4976–4985 (2000). ArticleCASPubMedPubMed Central Google Scholar
Peters, R.T. & Maniatis, T. A new family of IKK-related kinases may function as IκB kinase kinases. Biochim. Biophys. Acta1471, M57–M62 (2001). CASPubMed Google Scholar
Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T. & Toriumi, W. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem.274, 30353–30356 (1999). CASPubMed Google Scholar
Maniatis, T. et al. Structure and function of the interferon-β enhanceosome. Cold Spring Harb. Symp. Quant. Biol.63, 609–620 (1998). ArticleCASPubMed Google Scholar
Maniatis, T. Mechanisms of human β-interferon gene regulation. Harvey Lect.82, 71–104 (1986). CASPubMed Google Scholar
Wathelet, M.G. et al. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell1, 507–518 (1998). ArticleCASPubMed Google Scholar
Yoneyama, M. et al. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J.17, 1087–1095 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lin, R., Heylbroeck, C., Pitha, P.M. & Hiscott, J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol.18, 2986–2996 (1998). ArticleCASPubMedPubMed Central Google Scholar
Matsumoto, M., Kikkawa, S., Kohase, M., Miyake, K. & Seya, T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun.293, 1364–1369 (2002). ArticleCASPubMed Google Scholar
Muzio, M., Ni, J., Feng, P. & Dixit, V.M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science278, 1612–1615 (1997). ArticleCASPubMed Google Scholar
Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). ArticleCASPubMed Google Scholar
Pomerantz, J.L. & Baltimore, D. NFκ activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J.18, 6694–6704 (1999). ArticleCASPubMedPubMed Central Google Scholar
Servant, M.J. et al. Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double- stranded RNA. J. Biol. Chem.278, 9441–9447 (2003). ArticleCASPubMed Google Scholar
Chariot, A. et al. Association of the adaptor TANK with the IκB kinase (IKK) regulator NEMO connects IKK complexes with IKKε and TBK1 kinases. J. Biol. Chem.277, 37029–37036 (2002). ArticleCASPubMed Google Scholar
Lee, F.S., Hagler, J., Chen, Z.J. & Maniatis, T. Activation of the IκBα kinase complex by MEKK1, a kinase of the JNK pathway. Cell88, 213–222 (1997). ArticleCASPubMed Google Scholar
Yang, H. et al. Transcriptional activity of interferon regulatory factor (IRF)-3 depends on multiple protein-protein interactions. Eur. J. Biochem.269, 6142–6151 (2002). ArticleCASPubMed Google Scholar
Latz, E. et al. Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the Toll-like receptor 4–MD-2–CD14 complex in a process that is distinct from the initiation of signal transduction. J. Biol. Chem.277, 47834–47843 (2002). ArticleCASPubMed Google Scholar
Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science296, 550–553 (2002). ArticleCASPubMed Google Scholar