The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis (original) (raw)
Adair, T.H., Gay, W.J. & Montani, J.P. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am. J. Physiol.259, R393–R404 (1990). PubMedCAS Google Scholar
Aiello, L.P. Vascular endothelial growth factor and the eye: biochemical mechanisms of action and implications for novel therapies. Ophthalmic Res.29, 354–362 (1997). ArticlePubMedCAS Google Scholar
Enge, M. et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J.21, 4307–4316 (2002). ArticlePubMedPubMed CentralCAS Google Scholar
Smith, L.E. et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science276, 1706–1709 (1997). ArticlePubMedCAS Google Scholar
Watanabe, D. et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N. Engl. J. Med.353, 782–792 (2005). ArticlePubMedCAS Google Scholar
D'Amore, P.A. Mechanisms of retinal and choroidal neovascularization. Invest. Ophthalmol. Vis. Sci.35, 3974–3979 (1994). PubMedCAS Google Scholar
Cai, W., Rook, S.L., Jiang, Z.Y., Takahara, N. & Aiello, L.P. Mechanisms of hepatocyte growth factor–induced retinal endothelial cell migration and growth. Invest. Ophthalmol. Vis. Sci.41, 1885–1893 (2000). PubMedCAS Google Scholar
Folbergrova, J., Ljunggren, B., Norberg, K. & Siesjo, B.K. Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. Brain Res.80, 265–279 (1974). ArticlePubMedCAS Google Scholar
Hoyer, S. & Krier, C. Ischemia and aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol. Aging7, 23–29 (1986). ArticlePubMedCAS Google Scholar
Gutman, M., Bonomi, F., Pagani, S., Cerletti, P. & Kroneck, P. Modulation of the flavin redox potential as mode of regulation of succinate dehydrogenase activity. Biochim. Biophys. Acta591, 400–408 (1980). ArticlePubMedCAS Google Scholar
Meixner-Monori, B., Kubicek, C.P., Habison, A., Kubicek-Pranz, E.M. & Rohr, M. Presence and regulation of the α-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger. J. Bacteriol.161, 265–271 (1985). ArticlePubMedPubMed CentralCAS Google Scholar
Burns, P.A. & Wilson, D.J. Angiogenesis mediated by metabolites is dependent on vascular endothelial growth factor (VEGF). Angiogenesis6, 73–77 (2003). ArticlePubMedCAS Google Scholar
Lee, M.S. et al. Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models. Cancer Res.61, 3290–3293 (2001). PubMedCAS Google Scholar
Murray, B. & Wilson, D.J. A study of metabolites as intermediate effectors in angiogenesis. Angiogenesis4, 71–77 (2001). ArticlePubMedCAS Google Scholar
Neuman, R.E. & Mc, C.T. Growth-promoting properties of pyruvate oxal-acetate, and α-ketoglutarate for isolated Walker carcinosarcoma 256 cells. Proc. Soc. Exp. Biol. Med.98, 303–306 (1958). ArticlePubMedCAS Google Scholar
He, W. et al. Citric acid cycle intermediates as ligands for orphan G protein–coupled receptors. Nature429, 188–193 (2004). ArticlePubMedCAS Google Scholar
Sennlaub, F. et al. Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy. Circulation108, 198–204 (2003). ArticlePubMedCAS Google Scholar
Kushnir, M.M., Komaromy-Hiller, G., Shushan, B., Urry, F.M. & Roberts, W.L. Analysis of dicarboxylic acids by tandem mass spectrometry. High-throughput quantitative measurement of methylmalonic acid in serum, plasma, and urine. Clin. Chem.47, 1993–2002 (2001). ArticlePubMedCAS Google Scholar
van Adel, B.A., Kostic, C., Deglon, N., Ball, A.K. & Arsenijevic, Y. Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum. Gene Ther.14, 103–115 (2003). ArticlePubMedCAS Google Scholar
Wittenberger, T. et al. GPR99, a new G protein–coupled receptor with homology to a new subgroup of nucleotide receptors. BMC Genomics3, 17 (2002). ArticlePubMedPubMed Central Google Scholar
Ogunshola, O.O. et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res. Dev. Brain. Res.119, 139–153 (2000). ArticlePubMedCAS Google Scholar
Marti, H.H. & Risau, W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc. Natl. Acad. Sci. USA95, 15809–15814 (1998). ArticlePubMedCAS Google Scholar
Stowe, A.M. et al. VEGF protein associates to neurons in remote regions following cortical infarct. J. Cereb. Blood Flow Metab.27, 76–85 (2007). ArticlePubMedCAS Google Scholar
Calza, L., Giardino, L., Giuliani, A., Aloe, L. & Levi-Montalcini, R. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc. Natl. Acad. Sci. USA98, 4160–4165 (2001). ArticlePubMedCAS Google Scholar
Iriyama, A., Chen, Y.N., Tamaki, Y. & Yanagi, Y. Effect of anti-VEGF antibody on retinal ganglion cells in rats. Br. J. Ophthalmol.91, 1230–1233 (2007). ArticlePubMedPubMed Central Google Scholar
Zhu, T. et al. Proangiogenic effects of protease-activated receptor 2 are tumor necrosis factor-α and consecutively Tie2 dependent. Arterioscler. Thromb. Vasc. Biol.26, 744–750 (2006). ArticlePubMedCAS Google Scholar
Eklund, L. & Olsen, B.R. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp. Cell Res.312, 630–641 (2006). ArticlePubMedCAS Google Scholar
Koivunen, P. et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem.282, 4524–4532 (2007). ArticlePubMedCAS Google Scholar
Selak, M.A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell7, 77–85 (2005). ArticlePubMedCAS Google Scholar
McColm, J.R., Geisen, P. & Hartnett, M.E. VEGF isoforms and their expression after a single episode of hypoxia or repeated fluctuations between hyperoxia and hypoxia: relevance to clinical ROP. Mol. Vis.10, 512–520 (2004). PubMedPubMed CentralCAS Google Scholar
Ikeda, M., Hosoda, Y., Hirose, S., Okada, Y. & Ikeda, E. Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR and neuropilin-1 in synovial tissues of rheumatoid arthritis. J. Pathol.191, 426–433 (2000). ArticlePubMedCAS Google Scholar
Usui, T. et al. VEGF164(165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2. Invest. Ophthalmol. Vis. Sci.45, 368–374 (2004). ArticlePubMed Google Scholar
Sapieha, P.S., Peltier, M., Rendahl, K.G., Manning, W.C. & Di Polo, A. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol. Cell. Neurosci.24, 656–672 (2003). ArticlePubMedCAS Google Scholar
Berkelaar, M., Clarke, D.B., Wang, Y.C., Bray, G.M. & Aguayo, A.J. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J. Neurosci.14, 4368–4374 (1994). ArticlePubMedPubMed CentralCAS Google Scholar
Huxlin, K.R., Dreher, Z., Schulz, M. & Dreher, B. Glial reactivity in the retina of adult rats. Glia15, 105–118 (1995). ArticlePubMedCAS Google Scholar
Mu, X. et al. Ganglion cells are required for normal progenitor cell proliferation but not cell-fate determination or patterning in the developing mouse retina. Curr. Biol.15, 525–530 (2005). ArticlePubMedCAS Google Scholar
Higgins, R.D. et al. Diltiazem reduces retinal neovascularization in a mouse model of oxygen induced retinopathy. Curr. Eye Res.18, 20–27 (1999). ArticlePubMedCAS Google Scholar
Gariano, R.F. & Gardner, T.W. Retinal angiogenesis in development and disease. Nature438, 960–966 (2005). ArticlePubMedCAS Google Scholar
Arjamaa, O. & Nikinmaa, M. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp. Eye Res.83, 473–483 (2006). ArticlePubMedCAS Google Scholar
Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature359, 843–845 (1992). ArticleCASPubMed Google Scholar
Johnson, R.N. & Hansford, R.G. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria. Biochem. J.146, 527–535 (1975). ArticlePubMedPubMed CentralCAS Google Scholar
Hems, D.A. & Brosnan, J.T. Effects of ischaemia on content of metabolites in rat liver and kidney in vivo. Biochem. J.120, 105–111 (1970). ArticlePubMedPubMed CentralCAS Google Scholar
Pierce, E.A., Avery, R.L., Foley, E.D., Aiello, L.P. & Smith, L.E. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl. Acad. Sci. USA92, 905–909 (1995). ArticlePubMedCAS Google Scholar
Smith, L.E. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci.35, 101–111 (1994). PubMedCAS Google Scholar
Matthews, P.M., Nagy, Z., Brown, G.K., Land, J. & Squier, M.V. Isolated capillary proliferation in Leigh's syndrome. Clin. Neuropathol.13, 139–141 (1994). PubMedCAS Google Scholar
Piao, Y.S., Tang, G.C., Yang, H. & Lu, D.H. Clinico-neuropathological study of a Chinese case of familial adult Leigh syndrome. Neuropathology26, 218–221 (2006). ArticlePubMed Google Scholar
Francois, J. & Neetens, A. Comparative anatomy of the vascular supply of the eye in vertebrates. in In The Eye Vol. 5, (ed. H. Davson & L.T. Graham) 1–70 (Academic Press, New York, 1974). Google Scholar
Johnson, G.L. Ophthalmoscopic studies on the eyes of mammals. Phil. Trans. R. Soc. Lond.B2, 1–82 (1968). Google Scholar
Michaelson, I.C. Retinal Circulation in Man and Mammals. (ed. Thomas, C.C.) Ch. 1–9 (Charles C. Thomas, Springfield, Illinois, 1954). Google Scholar
Braun, R.D., Linsenmeier, R.A. & Goldstick, T.K. Oxygen consumption in the inner and outer retina of the cat. Invest. Ophthalmol. Vis. Sci.36, 542–554 (1995). PubMedCAS Google Scholar
Fruttiger, M. et al. PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron17, 1117–1131 (1996). ArticlePubMedCAS Google Scholar
Hughes, S., Yang, H. & Chan-Ling, T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest. Ophthalmol. Vis. Sci.41, 1217–1228 (2000). PubMedCAS Google Scholar
Dreher, B. & Robinson, S.R. Development of the retinofugal pathway in birds and mammals: evidence for a common 'timetable'. Brain Behav. Evol.31, 369–390 (1988). ArticlePubMedCAS Google Scholar
Cringle, S.J., Yu, P.K., Su, E.N. & Yu, D.Y. Oxygen distribution and consumption in the developing rat retina. Invest. Ophthalmol. Vis. Sci.47, 4072–4076 (2006). ArticlePubMed Google Scholar
Arany, Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature451, 1008–1012 (2008). ArticlePubMedCAS Google Scholar
Frassetto, L.J. et al. Kinase-dependent differentiation of a retinal ganglion cell precursor. Invest. Ophthalmol. Vis. Sci.47, 427–438 (2006). ArticlePubMed Google Scholar
Penn, J.S., Henry, M.M. & Tolman, B.L. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr. Res.36, 724–731 (1994). ArticlePubMedCAS Google Scholar