- Zaidi, M. Skeletal remodeling in health and disease. Nat. Med. 13, 791–801 (2007).
Article CAS PubMed Google Scholar
- Hill, P.A. Bone remodelling. Br. J. Orthod. 25, 101–107 (1998).
Article CAS PubMed Google Scholar
- Janssens, K. et al. Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat. Genet. 26, 273–275 (2000).
Article CAS PubMed Google Scholar
- Kinoshita, A. et al. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat. Genet. 26, 19–20 (2000).
Article CAS PubMed Google Scholar
- Hecht, J.T. et al. Evidence for locus heterogeneity in the Camurati-Engelmann (DPD1) syndrome. Clin. Genet. 59, 198–200 (2001).
Article CAS PubMed Google Scholar
- Oreffo, R.O., Mundy, G.R., Seyedin, S.M. & Bonewald, L.F. Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem. Biophys. Res. Commun. 158, 817–823 (1989).
Article CAS PubMed Google Scholar
- Mundy, G.R. Peptides and growth regulatory factors in bone. Rheum. Dis. Clin. North Am. 20, 577–588 (1994).
CAS PubMed Google Scholar
- Martin, T.J., Allan, E.H. & Fukumoto, S. The plasminogen-activator and inhibitor system in bone remodeling. Growth Regul. 3, 209–214 (1993).
CAS PubMed Google Scholar
- Hill, P.A., Tumber, A. & Meikle, M.C. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology 138, 3849–3858 (1997).
Article CAS PubMed Google Scholar
- Pfeilschifter, J. et al. Chemotactic response of osteoblast-like cells to transforming growth-factor-beta. J. Bone Miner. Res. 5, 825–830 (1990).
Article CAS PubMed Google Scholar
- Linkhart, T.A., Mohan, S. & Baylink, D.J. Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 19, 1S–12S (1996).
Article CAS PubMed Google Scholar
- Hughes, F.J., Aubin, J.E. & Heersche, J.N.M. Differential chemotactic responses of different populations of fetal-rat calvaria cells to platelet-derived growth-factor and transforming growth-factor-beta. Bone Miner. 19, 63–74 (1992).
Article CAS PubMed Google Scholar
- Bismar, H. et al. Transforming growth factor beta (TGF-beta) levels in the conditioned media of human bone cells: relationship to donor age, bone volume, and concentration of TGF-beta in human bone matrix in vivo. Bone 24, 565–569 (1999).
Article CAS PubMed Google Scholar
- Roberts, A.B., Frolik, C.A., Anzano, M.A. & Sporn, M.B. Transforming growth factors from neoplastic and nonneoplastic tissues. Fed. Proc. 42, 2621–2626 (1983).
CAS PubMed Google Scholar
- Seyedin, S.M., Thomas, T.C., Thompson, A.Y., Rosen, D.M. & Piez, K.A. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc. Natl. Acad. Sci. USA 82, 2267–2271 (1985).
Article CAS PubMed PubMed Central Google Scholar
- Dallas, S.L. et al. Characterization and autoregulation of latent transforming growth-factor-beta (TGF-beta) complexes in osteoblast-like cell-lines - production of a latent complex lacking the latent TGF-beta-binding protein. J. Biol. Chem. 269, 6815–6821 (1994).
CAS PubMed Google Scholar
- Gentry, L.E., Lioubin, M.N., Purchio, A.F. & Marquardt, H. Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol. Cell. Biol. 8, 4162–4168 (1988).
Article CAS PubMed PubMed Central Google Scholar
- Pfeilschifter, J., Bonewald, L. & Mundy, G.R. Characterization of the latent transforming growth factor beta complex in bone. J. Bone Miner. Res. 5, 49–58 (1990).
Article CAS PubMed Google Scholar
- Pedrozo, H.A. et al. Potential mechanisms for the plasmin-mediated release and activation of latent transforming growth factor-beta 1 from the extracellular matrix of growth plate chondrocytes. Endocrinology 140, 5806–5816 (1999).
Article CAS PubMed Google Scholar
- Janssens, K., ten Dijke, P., Janssens, S. & Van Hul, W. Transforming growth factor-beta 1 to the bone. Endocr. Rev. 26, 743–774 (2005).
Article CAS PubMed Google Scholar
- Jian, H. et al. Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta 1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev. 20, 666–674 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Erlebacher, A., Filvaroff, E.H., Ye, J.Q. & Derynck, R. Osteoblastic responses to TGF-beta during bone remodeling. Mol. Biol. Cell 9, 1903–1918 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Filvaroff, E. et al. Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126, 4267–4279 (1999).
CAS PubMed Google Scholar
- Janssens, K. et al. Camurati-Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J. Med. Genet. 43, 1–11 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Janssens, K., ten Dijke, P., Ralston, S.H., Bergmann, C. & Van Hul, W. Transforming growth factor-beta 1 mutations in Camurati-Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J. Biol. Chem. 278, 7718–7724 (2003).
Article CAS PubMed Google Scholar
- Saito, T. et al. Domain-specific mutations of a transforming growth factor (TGF)-beta 1 latency-associated peptide cause Camurati-Engelmann disease because of the formation of a constitutively active form of TGF-beta 1. J. Biol. Chem. 276, 11469–11472 (2001).
Article CAS PubMed Google Scholar
- Prockop, D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).
Article CAS PubMed Google Scholar
- Caplan, A.I. Mesenchymal stem-cells. J. Orthop. Res. 9, 641–650 (1991).
Article CAS PubMed Google Scholar
- Dennis, J.E., Carbillet, J.P., Caplan, A.I. & Charbord, P. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170, 73–82 (2002).
Article PubMed Google Scholar
- Gronthos, S., Graves, S.E., Ohta, S. & Simmons, P.J. The Stro-1+ fraction of adult human bone-marrow contains the osteogenic precursors. Blood 84, 4164–4173 (1994).
CAS PubMed Google Scholar
- Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).
Article CAS PubMed Google Scholar
- Meirelles, L.S. & Nardi, N.B. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br. J. Haematol. 123, 702–711 (2003).
Article Google Scholar
- Leucht, P. et al. Effect of mechanical stimuli on skeletal regeneration around implants. Bone 40, 919–930 (2007).
Article PubMed Google Scholar
- Caplan, A.I. Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 11, 1198–1211 (2005).
Article CAS PubMed Google Scholar
- Horwitz, E.M. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5, 309–313 (1999).
Article CAS PubMed Google Scholar
- Horwitz, E.M. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl. Acad. Sci. USA 99, 8932–8937 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Mirmalek-Sani, S.H. et al. Characterization and multipotentiality of human fetal femur-derived cells: implications for skeletal tissue regeneration. Stem Cells 24, 1042–1053 (2006).
Article PubMed Google Scholar
- Canalis, E., Economides, A.N. & Gazzerro, E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24, 218–235 (2003).
Article CAS PubMed Google Scholar
- Ozaki, Y. et al. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev. 16, 119–130 (2007).
Article CAS PubMed Google Scholar
- Maeda, S., Hayashi, M., Komiya, S., Imamura, T. & Miyazono, K. Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 23, 552–563 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Kulkarni, A.B. et al. Transforming growth factor-beta-1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770–774 (1993).
Article CAS PubMed PubMed Central Google Scholar
- Geiser, A.G. et al. Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta 1 gene. Bone 23, 87–93 (1998).
Article CAS PubMed Google Scholar
- Atti, E. et al. Effects of transforming growth factor-beta deficiency on bone development: a Fourier transform-infrared imaging analysis. Bone 31, 675–684 (2002).
Article CAS PubMed Google Scholar
- Shinkai, Y. et al. Rag-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).
Article CAS PubMed Google Scholar
- Engle, S.J. et al. Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res. 62, 6362–6366 (2002).
CAS PubMed Google Scholar
- Massagué, J. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).
Article PubMed Google Scholar
- Attisano, L. & Wrana, J.L. Signal transduction by the TGF-beta superfamily. Science 296, 1646–1647 (2002).
Article CAS PubMed Google Scholar
- DaCosta Byfield, S., Major, C., Laping, N.J. & Roberts, A.B. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 65, 744–752 (2004).
Article PubMed Google Scholar
- Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGF beta receptor and functions as an antagonist of TGF beta signaling. Cell 89, 1165–1173 (1997).
Article CAS PubMed Google Scholar
- Yang, X., Li, C.L., Herrera, P.L. & Deng, C.X. Generation of Smad4/Dpc4 conditional knockout mice. Genesis 32, 80–81 (2002).
Article CAS PubMed Google Scholar
- Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
Article CAS PubMed Google Scholar
- Zink, A.R. et al. Evidence for a 7000-year-old case of primary hyperparathyroidism. JAMA 293, 40–42 (2005).
Article CAS PubMed Google Scholar
- Roodman, G.D. & Windle, J.J. Paget disease of bone. J. Clin. Invest. 115, 200–208 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Surks, M.I. et al. Subclinical thyroid disease - Scientific review and guidelines for diagnosis and management. JAMA 291, 228–238 (2004).
Article CAS PubMed Google Scholar
- Friedenstein, A.J., Chailakhyan, R.K. & Gerasimov, U.V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 20, 263–272 (1987).
CAS PubMed Google Scholar
- Owen, M. & Friedenstein, A.J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60 (1988).
CAS PubMed Google Scholar
- Friedenstein, A.J. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 2, 83–92 (1974).
CAS PubMed Google Scholar