Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction (original) (raw)
Goldring, M.B. & Goldring, S.R. Osteoarthritis. J. Cell. Physiol.213, 626–634 (2007). ArticleCAS Google Scholar
Loeser, R.F. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators and aging collide. Arthritis Rheum.54, 1357–1360 (2006). ArticleCAS Google Scholar
Sandell, L.J. & Aigner, T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res.3, 107–113 (2001). ArticleCAS Google Scholar
Abramson, S.B., Attur, M. & Yazici, Y. Prospects for disease modification in osteoarthritis. Nat. Clin. Pract. Rheumatol.2, 304–312 (2006). ArticleCAS Google Scholar
Burrage, P.S., Mix, K.S. & Brinckerhoff, C.E. Matrix metalloproteinases: role in arthritis. Front. Biosci.11, 529–543 (2006). ArticleCAS Google Scholar
Song, R.H. et al. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS4 and ADAMTS5. Arthritis Rheum.56, 575–585 (2007). ArticleCAS Google Scholar
Glasson, S.S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature434, 644–648 (2005). ArticleCAS Google Scholar
Kumar, S. et al. Identification and initial characterization of 5000 expressed sequenced tags (ESTs) each from adult human normal and osteoarthritic cartilage cDNA libraries. Osteoarthritis Cartilage9, 641–653 (2001). ArticleCAS Google Scholar
Patel, S.A. & Simon, M.C. Biology of hypoxia-inducible factor-2α in development and disease. Cell Death Differ.15, 628–634 (2008). ArticleCAS Google Scholar
Ratcliffe, P.J. HIF-1 and HIF-2: working alone or together in hypoxia? J. Clin. Invest.117, 862–865 (2007). ArticleCAS Google Scholar
Hu, C.J., Wang, L.Y., Chodosh, L.A., Keith, B. & Simon, M.C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol.23, 9361–9374 (2003). ArticleCAS Google Scholar
Sowter, H.M., Raval, R.R., Moore, J.W., Ratcliffe, P.J. & Harris, A.L. Predominant role of hypoxia-inducible transcription factor (Hif)-1α versus Hif-2α in regulation of the transcriptional response to hypoxia. Cancer Res.63, 6130–6134 (2003). CASPubMed Google Scholar
Raval, R.R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau–associated renal cell carcinoma. Mol. Cell. Biol.25, 5675–5686 (2005). ArticleCAS Google Scholar
Bracken, C.P. et al. Cell-specific regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α stabilization and transactivation in a graded oxygen environment. J. Biol. Chem.281, 22575–22585 (2006). ArticleCAS Google Scholar
Carroll, V.A & Ashcroft, M. Role of hypoxia-inducible factor (HIF)-1α versus HIF-2α in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res.66, 6264–6270 (2006). ArticleCAS Google Scholar
Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. & McKnight, S.L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev.12, 3320–3324 (1998). ArticleCAS Google Scholar
Compernolle, V. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med.8, 702–710 (2002). ArticleCAS Google Scholar
Rankin, E.B. et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest.117, 1068–1077 (2007). ArticleCAS Google Scholar
Mastrogiannaki, M. et al. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Invest.119, 1159–1166 (2009). ArticleCAS Google Scholar
Duval, E. et al. Hypoxia-inducible factor 1α inhibits the fibroblast-like markers type I and type III collagen during hypoxia-induced chondrocyte redifferentiation: hypoxia not only induces type II collagen and aggrecan, but it also inhibits type I and type III collagen in the hypoxia-inducible factor 1α–dependent redifferentiation of chondrocytes. Arthritis Rheum.60, 3038–3048 (2009). ArticleCAS Google Scholar
Pfander, D. et al. HIF-1α controls extracellular matrix synthesis by epiphyseal chondrocytes. J. Cell Sci.116, 1819–1826 (2003). ArticleCAS Google Scholar
Schipani, E. et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev.15, 2865–2876 (2001). CASPubMedPubMed Central Google Scholar
Bohensky, J. et al. Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. Arthritis Rheum.60, 1406–1415 (2009). Article Google Scholar
Daheshia, M. & Yao, J.Q. The interleukin 1β pathway in the pathogenesis of osteoarthritis. J. Rheumatol.35, 2306–2312 (2008). ArticleCAS Google Scholar
Maemura, K. et al. Generation of a dominant-negative mutant of endothelial PAS domain protein 1 by deletion of a potent C-terminal transactivation domain. J. Biol. Chem.274, 31565–31570 (1999). ArticleCAS Google Scholar
Pfander, D. & Gelse, K. Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr. Opin. Rheumatol.19, 457–462 (2007). ArticleCAS Google Scholar
Kleemann, R.U., Krocker, D., Cedraro, A., Tuischer, J. & Duda, G.N. Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS Grade). Osteoarthritis Cartilage13, 958–963 (2005). ArticleCAS Google Scholar
Mason, R.M. et al. The STR/ort mouse and its use as a model of osteoarthritis. Osteoarthritis Cartilage9, 85–91 (2001). ArticleCAS Google Scholar
Mankin, H.J., Dorfman, H., Lippiello, L. & Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J. Bone Joint Surg. Am.53, 523–537 (1971). ArticleCAS Google Scholar
van der Kraan, P.M., Vitters, E.L., van Beuningen, H.M., van de Putte, L.B. & van den Berg, W.B. Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. J. Exp. Pathol. (Oxford)71, 19–31 (1990). CAS Google Scholar
Glasson, S.S. et al. Characterization of and osteoarthritis susceptibility in ADAMTS-4–knockout mice. Arthritis Rheum.50, 2547–2558 (2004). ArticleCAS Google Scholar
Goldring, M.B. Osteoarthritis and cartilage: the role of cytokines. Curr. Rheumatol. Rep.2, 459–465 (2000). ArticleCAS Google Scholar
Tanaka, T. et al. Endothelial PAS domain protein 1 (EPAS1) induces adrenomedullin gene expression in cardiac myocytes: role of EPAS1 in an inflammatory response in cardiac myocytes. J. Mol. Cell. Cardiol.34, 739–748 (2002). ArticleCAS Google Scholar
Hofer, T. et al. Dissecting hypoxia-dependent and hypoxia-independent steps in the HIF-1α activation cascade: implications for HIF-1α gene therapy. FASEB J.15, 2715–2717 (2001). ArticleCAS Google Scholar
Yun, S. et al. Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J. Biol. Chem.277, 34808–34814 (2002). ArticleCAS Google Scholar
Pan, M.R. & Hung, W.C. Nonsteroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 via suppression of the ERK/Sp1-mediated transcription. J. Biol. Chem.277, 32775–32780 (2002). ArticleCAS Google Scholar
Petrella, B.L., Lohi, J. & Brinckerhoff, C.E. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2α in von Hippel-Lindau renal cell carcinoma. Oncogene24, 1043–1052 (2005). ArticleCAS Google Scholar
Martin, G. et al. Effect of hypoxia and reoxygenation on gene expression and response to interleukin-1 in cultured articular chondrocytes. Arthritis Rheum.50, 3549–3560 (2004). ArticleCAS Google Scholar
Sandell, L.J. et al. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1β. Osteoarthritis Cartilage16, 1560–1571 (2008). ArticleCAS Google Scholar
Ueta, C. et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J. Cell Biol.153, 87–100 (2001). ArticleCAS Google Scholar
Rowan, A.D., Hui, W., Cawston, T.E. & Richards, C.D. Adenoviral gene transfer of interleukin-1 in combination with oncostatin M induces significant joint damage in a murine model. Am. J. Pathol.162, 1975–1984 (2003). ArticleCAS Google Scholar
Kiviranta, I., Tammi, M., Jurvelin, J., Saamanen, A.M. & Helminen, H.J. Fixation, decalcification and tissue processing effects on articular cartilage proteoglycans. Histochemistry80, 569–573 (1984). ArticleCAS Google Scholar
Ryu, J.H. & Chun, J.S. Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J. Biol. Chem.281, 22039–22047 (2006). ArticleCAS Google Scholar
Ryu, J.H. et al. Regulation of the chondrocyte phenotype by β-catenin. Development129, 5541–5550 (2002). ArticleCAS Google Scholar
Huh, Y.H., Ryu, J.H. & Chun, J.S. Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J. Biol. Chem.282, 17123–17131 (2007). ArticleCAS Google Scholar
Gosset, M., Berenbaum, F., Thirion, S. & Jacques, C. Primary culture and phenotyping of murine chondrocytes. Nat. Protoc.3, 1253–1260 (2008). ArticleCAS Google Scholar
Oh, C.D. & Chun, J.S. Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1. J. Biol. Chem.278, 36563–36571 (2003). ArticleCAS Google Scholar