Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice (original) (raw)

References

  1. Goldenberg, R.L., Hauth, J.C. & Andrews, W.W. Intrauterine infection and preterm delivery. N. Engl. J. Med. 342, 1500–1507 (2000).
    Article CAS Google Scholar
  2. Bhakoo, O.N., Narang, A., Karthikeyan, G. & Kumar, P. Spectrum of respiratory distress in very low birthweight neonates. Indian J. Pediatr. 67, 803–804 (2000).
    Article CAS Google Scholar
  3. Bourbon, J.R., Rieutort, M., Engle, M.J. & Farrell, P.M. Utilization of glycogen for phospholipid synthesis in fetal rat lung. Biochim. Biophys. Acta 712, 382–389 (1982).
    Article CAS Google Scholar
  4. Kennedy, J.D. Lung function outcome in children of premature birth. J. Paediatr. Child Health 35, 516–521 (1999).
    Article CAS Google Scholar
  5. Jakkula, M. et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L600–607 (2000).
    Article CAS Google Scholar
  6. Ferrara, N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell. Physiol. 280, C1358–1366 (2001).
    Article CAS Google Scholar
  7. Healy, A.M., Morgenthau, L., Zhu, X., Farber, H.W. & Cardoso, W.V. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev. Dyn. 219, 341–352 (2000).
    Article CAS Google Scholar
  8. Klekamp, J.G., Jarzecka, K. & Perkett, E.A. Exposure to hyperoxia decreases the expression of vascular endothelial growth factor and its receptors in adult rat lungs. Am. J. Pathol. 154, 823–831 (1999).
    Article CAS Google Scholar
  9. Kaner, R.J. & Crystal, R.G. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol. Med. 7, 240–246 (2001).
    Article CAS Google Scholar
  10. Lassus, P. et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am. J. Respir. Crit. Care Med. 164, 1981–1987 (2001).
    Article CAS Google Scholar
  11. Bhatt, A.J. et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 164, 1971–1980 (2001).
    Article CAS Google Scholar
  12. Lassus, P., Ristimaki, A., Ylikorkala, O., Viinikka, L. & Andersson, S. Vascular endothelial growth factor in human preterm lung. Am. J. Respir. Crit. Care Med. 159, 1429–1433 (1999).
    Article CAS Google Scholar
  13. D'Angio, C. et al. Vascular endothelial growth factor in pulmonary lavage fluid from premature infants: Effects of age and postnatal dexamethasone. Biol. Neonate 76, 266–273 (1999).
    Article CAS Google Scholar
  14. Brown, K.R., England, K.M., Goss, K.L., Snyder, J.M. & Acarregui, M.J. VEGF induces airway epithelial cell proliferation in human fetal lung in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1001–1010 (2001).
    Article CAS Google Scholar
  15. Tian, H., McKnight, S.L. & Russell, D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).
    Article CAS Google Scholar
  16. Ema, M. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 α regulates VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA 94, 4273–4278 (1997).
    Article CAS Google Scholar
  17. Flamme, I. et al. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech. Dev. 63, 51–63 (1997).
    Article CAS Google Scholar
  18. Brusselmans, K. et al. Hypoxia-inducible factor-2α (HIF-2α) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J. Biol. Chem. 276, 39192–39196 (2001).
    Article CAS Google Scholar
  19. Botas, C. et al. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc. Natl. Acad. Sci. USA 95, 11869–11874 (1998).
    Article CAS Google Scholar
  20. Jain, S., Maltepe, E., Lu, M.M., Simon, C. & Bradfield, C.A. Expression of ARNT, ARNT2, HIF-1α, HIF-2α, and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73, 117–123 (1998).
    Article CAS Google Scholar
  21. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999).
    Article CAS Google Scholar
  22. Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002).
    Article CAS Google Scholar
  23. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med. 7, 575–583 (2001).
    Article CAS Google Scholar
  24. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 28, 131–138 (2001).
    Article CAS Google Scholar
  25. Rannels, S.R. Impaired surfactant synthesis in fetal type II lung cells from gsd/gsd rats. Exp. Lung Res. 22, 213–29 (1996).
    Article CAS Google Scholar
  26. Rayani, H.H., Gewolb, I.H. & Floros, J. Glucose decreases steady state mRNA content of hydrophobic surfactant proteins B and C in fetal rat lung explants. Exp. Lung Res. 25, 69–79 (1999).
    Article CAS Google Scholar
  27. Gilden, C., Sevanian, A., Tierney, D.F., Kaplan, S.A. & Barrett, C.T. Regulation of fetal lung phosphatidyl choline synthesis by cortisol: role of glycogen and glucose. Pediatr. Res. 11, 845–848 (1977).
    Article CAS Google Scholar
  28. Ren, J.M., Gulve, E.A., Cartee, G.D. & Holloszy, J.O. Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle. Am. J. Physiol. 263, E1086–1091 (1992).
    CAS PubMed Google Scholar
  29. Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell. Biol. 13, 167–171 (2001).
    Article CAS Google Scholar
  30. Yu, A.Y. et al. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am. J. Physiol. 275, L818–826 (1998).
    Article CAS Google Scholar
  31. Liang, Y. et al. Activation of vascular endothelial growth factor A transcription in tumorigenic glioblastoma cell lines by an enhancer with cell-type specific DNAse 1 accessibility. J. Biol. Chem. Mar 23 (2002) online publication: http://www.jbc.org/cgi/content/abstract/M201766200v1
  32. Bernatchez, P.N., Winstead, M.V., Dennis, E.A. & Sirois, M.G. VEGF stimulation of endothelial cell PAF synthesis is mediated by group V 14 kDa secretory phospholipase A2. Br. J. Pharmacol. 134, 197–205 (2001).
    Article CAS Google Scholar
  33. Bourbon, J.R., Hoffman, D.R. & Johnston, J.M. Effect of platelet-activating factor on glycogen metabolism in fetal rat lung. Exp. Lung Res. 17, 789–801 (1991).
    Article CAS Google Scholar
  34. Rooney, S.A. Regulation of surfactant secretion. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 129, 233–243 (2001).
    Article CAS Google Scholar
  35. Pugazhenthi, S. & Khandelwal, R.L. Regulation of glycogen synthase activation in isolated hepatocytes. Mol. Cell. Biochem. 149–150, 95–101 (1995).
    Article Google Scholar
  36. Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. & McKnight, S.L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320–3324 (1998).
    Article CAS Google Scholar
  37. Peng, J., Zhang, L., Drysdale, L. & Fong, G.H. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc. Natl. Acad. Sci. USA 97, 8386–8391 (2000).
    Article CAS Google Scholar
  38. Ng, Y.S., Rohan, R., Sunday, M.E., Demello, D.E. & D'Amore, P.A. Differential expression of VEGF isoforms in mouse during development and in the adult. Dev. Dyn. 220, 112–121 (2001).
    Article CAS Google Scholar
  39. Corne, J. et al. IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. J. Clin. Invest. 106, 783–791 (2000).
    Article CAS Google Scholar
  40. Walfisch, A., Hallak, M. & Mazor, M. Multiple courses of antenatal steroids: risks and benefits. Obstet. Gynecol. 98, 491–497 (2001).
    CAS PubMed Google Scholar
  41. Bhatt, A.J., Amin, S.B., Chess, P.R., Watkins, R.H. & Maniscalco, W.M. Expression of vascular endothelial growth factor and Flk-1 in developing and glucocorticoid-treated mouse lung. Pediatr. Res. 47, 606–613 (2000).
    Article CAS Google Scholar
  42. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).
    Article CAS Google Scholar
  43. Hoet, P.H., Gilissen, L. & Nemery, B. Polyanions protect against the in vitro pulmonary toxicity of polycationic paint components associated with the Ardystil syndrome. Toxicol. Appl. Pharmacol. 175, 184–190 (2001).
    Article CAS Google Scholar

Download references