STAT3 signaling controls satellite cell expansion and skeletal muscle repair (original) (raw)

References

  1. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).
    Article CAS PubMed Google Scholar
  2. Collins, C.A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).
    Article CAS PubMed Google Scholar
  3. Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005).
    Article CAS PubMed Google Scholar
  4. Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H.M. Self-renewal and expansion of single transplanted muscle stem cells. Nature 456, 502–506 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  5. Cerletti, M. et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134, 37–47 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  6. Sacco, A. et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143, 1059–1071 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  7. Lepper, C., Partridge, T.A. & Fan, C.M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  8. Sambasivan, R. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138, 3647–3656 (2011).
    Article CAS PubMed Google Scholar
  9. Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138, 3625–3637 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  10. Chakkalakal, J.V., Jones, K.M., Basson, M.A. & Brack, A.S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  11. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).
    Article CAS PubMed Google Scholar
  12. Tidball, J.G. Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R345–R353 (2005).
    Article CAS PubMed Google Scholar
  13. Fearon, K.C., Glass, D.J. & Guttridge, D.C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16, 153–166 (2012).
    Article CAS PubMed Google Scholar
  14. Strassmann, G., Fong, M., Kenney, J.S. & Jacob, C.O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Invest. 89, 1681–1684 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  15. Bonetto, A. et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS ONE 6, e22538 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  16. Muñoz-Cánoves, P., Scheele, C., Pedersen, B.K. & Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 280, 4131–4148 (2013).
    Article PubMed PubMed Central CAS Google Scholar
  17. Zhang, L. et al. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 18, 368–379 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  18. Kiger, A.A., Jones, D.L., Schulz, C., Rogers, M.B. & Fuller, M.T. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001).
    Article CAS PubMed Google Scholar
  19. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294, 2546–2549 (2001).
    Article CAS PubMed Google Scholar
  20. Oh, I.H. & Eaves, C.J. Overexpression of a dominant negative form of STAT3 selectively impairs hematopoietic stem cell activity. Oncogene 21, 4778–4787 (2002).
    Article CAS PubMed Google Scholar
  21. Doles, J., Storer, M., Cozzuto, L., Roma, G. & Keyes, W.M. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 26, 2144–2153 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  22. Haddad, F., Zaldivar, F., Cooper, D.M. & Adams, G.R. IL-6–induced skeletal muscle atrophy. J. Appl. Physiol. (1985) 98, 911–917 (2005).
    Article CAS Google Scholar
  23. Serrano, A.L., Baeza-Raja, B., Perdiguero, E., Jardi, M. & Munoz-Canoves, P. Interleukin-6 is an essential regulator of satellite cell–mediated skeletal muscle hypertrophy. Cell Metab. 7, 33–44 (2008).
    Article CAS PubMed Google Scholar
  24. Zeidler, M.P., Bach, E.A. & Perrimon, N. The roles of the Drosophila JAK/STAT pathway. Oncogene 19, 2598–2606 (2000).
    Article CAS PubMed Google Scholar
  25. Gorissen, M., de Vrieze, E., Flik, G. & Huising, M.O. STAT genes display differential evolutionary rates that correlate with their roles in the endocrine and immune system. J. Endocrinol. 209, 175–184 (2011).
    Article CAS PubMed Google Scholar
  26. Darnell, J.E. Jr., Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).
    Article CAS PubMed Google Scholar
  27. Zhong, Z., Wen, Z. & Darnell, J.E. Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98 (1994).
    Article CAS PubMed Google Scholar
  28. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA 94, 3801–3804 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  29. Sun, L. et al. JAK1-STAT1-STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J. Cell Biol. 179, 129–138 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  30. Wang, K., Wang, C., Xiao, F., Wang, H. & Wu, Z. JAK2/STAT2/STAT3 are required for myogenic differentiation. J. Biol. Chem. 283, 34029–34036 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  31. Harris, J.B. & MacDonell, C.A. Phospholipase A2 activity of notexin and its role in muscle damage. Toxicon. 19, 419–430 (1981).
    Article CAS PubMed Google Scholar
  32. Megeney, L.A., Perry, R.L., LeCouter, J.E. & Rudnicki, M.A. bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Dev. Genet. 19, 139–145 (1996).
    Article CAS PubMed Google Scholar
  33. Goldhamer, D.J., Faerman, A., Shani, M. & Emerson, C.P. Jr. Regulatory elements that control the lineage-specific expression of myoD. Science 256, 538–542 (1992).
    Article CAS PubMed Google Scholar
  34. Tapscott, S.J., Lassar, A.B. & Weintraub, H. A novel myoblast enhancer element mediates MyoD transcription. Mol. Cell. Biol. 12, 4994–5003 (1992).
    CAS PubMed PubMed Central Google Scholar
  35. Penn, B.H., Bergstrom, D.A., Dilworth, F.J., Bengal, E. & Tapscott, S.J.A. MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev. 18, 2348–2353 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  36. Asp, P. et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. USA 108, E149–E158 (2011).
    Article PubMed PubMed Central Google Scholar
  37. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type–specific gene expression. Nature 459, 108–112 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  38. Takeda, K. et al. Stat3 activation is responsible for IL-6–dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell–specific Stat3-deficient mice. J. Immunol. 161, 4652–4660 (1998).
    CAS PubMed Google Scholar
  39. Nishijo, K. et al. Biomarker system for studying muscle, stem cells, and cancer in vivo. FASEB J. 23, 2681–2690 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  40. Palacios, D. et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7, 455–469 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  41. Bernet, J.D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  42. Cosgrove, B.D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).
    Article CAS PubMed PubMed Central Google Scholar

Download references