Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell102, 777–786 (2000). ArticleCASPubMed Google Scholar
Collins, C.A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell122, 289–301 (2005). ArticleCASPubMed Google Scholar
Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science309, 2064–2067 (2005). ArticleCASPubMed Google Scholar
Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H.M. Self-renewal and expansion of single transplanted muscle stem cells. Nature456, 502–506 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cerletti, M. et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell134, 37–47 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sacco, A. et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell143, 1059–1071 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lepper, C., Partridge, T.A. & Fan, C.M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development138, 3639–3646 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sambasivan, R. et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development138, 3647–3656 (2011). ArticleCASPubMed Google Scholar
Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development138, 3625–3637 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chakkalakal, J.V., Jones, K.M., Basson, M.A. & Brack, A.S. The aged niche disrupts muscle stem cell quiescence. Nature490, 355–360 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature506, 316–321 (2014). ArticleCASPubMed Google Scholar
Tidball, J.G. Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol.288, R345–R353 (2005). ArticleCASPubMed Google Scholar
Fearon, K.C., Glass, D.J. & Guttridge, D.C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab.16, 153–166 (2012). ArticleCASPubMed Google Scholar
Strassmann, G., Fong, M., Kenney, J.S. & Jacob, C.O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Invest.89, 1681–1684 (1992). ArticleCASPubMedPubMed Central Google Scholar
Bonetto, A. et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS ONE6, e22538 (2011). ArticleCASPubMedPubMed Central Google Scholar
Muñoz-Cánoves, P., Scheele, C., Pedersen, B.K. & Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J.280, 4131–4148 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, L. et al. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab.18, 368–379 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kiger, A.A., Jones, D.L., Schulz, C., Rogers, M.B. & Fuller, M.T. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science294, 2542–2545 (2001). ArticleCASPubMed Google Scholar
Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science294, 2546–2549 (2001). ArticleCASPubMed Google Scholar
Oh, I.H. & Eaves, C.J. Overexpression of a dominant negative form of STAT3 selectively impairs hematopoietic stem cell activity. Oncogene21, 4778–4787 (2002). ArticleCASPubMed Google Scholar
Doles, J., Storer, M., Cozzuto, L., Roma, G. & Keyes, W.M. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev.26, 2144–2153 (2012). ArticleCASPubMedPubMed Central Google Scholar
Serrano, A.L., Baeza-Raja, B., Perdiguero, E., Jardi, M. & Munoz-Canoves, P. Interleukin-6 is an essential regulator of satellite cell–mediated skeletal muscle hypertrophy. Cell Metab.7, 33–44 (2008). ArticleCASPubMed Google Scholar
Zeidler, M.P., Bach, E.A. & Perrimon, N. The roles of the Drosophila JAK/STAT pathway. Oncogene19, 2598–2606 (2000). ArticleCASPubMed Google Scholar
Gorissen, M., de Vrieze, E., Flik, G. & Huising, M.O. STAT genes display differential evolutionary rates that correlate with their roles in the endocrine and immune system. J. Endocrinol.209, 175–184 (2011). ArticleCASPubMed Google Scholar
Darnell, J.E. Jr., Kerr, I.M. & Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science264, 1415–1421 (1994). ArticleCASPubMed Google Scholar
Zhong, Z., Wen, Z. & Darnell, J.E. Jr. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science264, 95–98 (1994). ArticleCASPubMed Google Scholar
Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA94, 3801–3804 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sun, L. et al. JAK1-STAT1-STAT3, a key pathway promoting proliferation and preventing premature differentiation of myoblasts. J. Cell Biol.179, 129–138 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wang, K., Wang, C., Xiao, F., Wang, H. & Wu, Z. JAK2/STAT2/STAT3 are required for myogenic differentiation. J. Biol. Chem.283, 34029–34036 (2008). ArticleCASPubMedPubMed Central Google Scholar
Harris, J.B. & MacDonell, C.A. Phospholipase A2 activity of notexin and its role in muscle damage. Toxicon. 19, 419–430 (1981). ArticleCASPubMed Google Scholar
Megeney, L.A., Perry, R.L., LeCouter, J.E. & Rudnicki, M.A. bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Dev. Genet.19, 139–145 (1996). ArticleCASPubMed Google Scholar
Goldhamer, D.J., Faerman, A., Shani, M. & Emerson, C.P. Jr. Regulatory elements that control the lineage-specific expression of myoD. Science256, 538–542 (1992). ArticleCASPubMed Google Scholar
Tapscott, S.J., Lassar, A.B. & Weintraub, H. A novel myoblast enhancer element mediates MyoD transcription. Mol. Cell. Biol.12, 4994–5003 (1992). CASPubMedPubMed Central Google Scholar
Penn, B.H., Bergstrom, D.A., Dilworth, F.J., Bengal, E. & Tapscott, S.J.A. MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev.18, 2348–2353 (2004). ArticleCASPubMedPubMed Central Google Scholar
Asp, P. et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. USA108, E149–E158 (2011). ArticlePubMedPubMed Central Google Scholar
Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type–specific gene expression. Nature459, 108–112 (2009). ArticleCASPubMedPubMed Central Google Scholar
Takeda, K. et al. Stat3 activation is responsible for IL-6–dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell–specific Stat3-deficient mice. J. Immunol.161, 4652–4660 (1998). CASPubMed Google Scholar
Palacios, D. et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell7, 455–469 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bernet, J.D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med.20, 265–271 (2014). ArticleCASPubMedPubMed Central Google Scholar
Cosgrove, B.D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med.20, 255–264 (2014). ArticleCASPubMedPubMed Central Google Scholar