Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell155, 1119–1130 (2013). CASPubMed Google Scholar
Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell155, 1104–1118 (2013). PubMed Google Scholar
Kim, W.Y. & Sharpless, N.E. The regulation of INK4-ARF in cancer and aging. Cell127, 265–275 (2006). CASPubMed Google Scholar
Nielsen, G.P. et al. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab. Invest.79, 1137–1143 (1999). CASPubMed Google Scholar
Burd, C.E. et al. Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell152, 340–351 (2013). CASPubMedPubMed Central Google Scholar
Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature443, 453–457 (2006). CASPubMed Google Scholar
Janzen, V. et al. Stem cell aging modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature443, 421–426 (2006). CASPubMed Google Scholar
Molofsky, A.V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during aging. Nature443, 448–452 (2006). CASPubMedPubMed Central Google Scholar
Baker, D.J. et al. Clearance of p16Ink4a-positive senescent cells delays aging-associated disorders. Nature479, 232–236 (2011). CASPubMedPubMed Central Google Scholar
Baker, D.J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature530, 184–189 (2015). Google Scholar
Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev.28, 99–114 (2014). CASPubMedPubMed Central Google Scholar
Dörr, J.R. et al. Synthetic-lethal metabolic targeting of cellular senescence in cancer therapy. Nature501, 421–425 (2013). PubMed Google Scholar
Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature498, 109–112 (2013). CASPubMed Google Scholar
Takebayashi, S. et al. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells. Aging Cell14, 689–697 (2015). CASPubMedPubMed Central Google Scholar
Gumbiner, B. et al. Effects of aging on insulin secretion. Diabetes38, 1549–1556 (1989). CASPubMed Google Scholar
Iozzo, P. et al. Independent influence of age on basal insulin secretion in nondiabetic humans. J. Clin. Endocrinol. Metab.84, 863–868 (1999). CASPubMed Google Scholar
Basu, R. et al. Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action and clearance. Diabetes52, 1738–1748 (2003). CASPubMed Google Scholar
Chen, H. et al. Polycomb protein Ezh2 regulates pancreatic beta cell Ink4a-Arf expression and regeneration in diabetes mellitus. Genes Dev.23, 975–985 (2009). CASPubMedPubMed Central Google Scholar
Bao, X.Y., Xie, C. & Yang, M.S. Association between type 2 diabetes and CDKN2A/B: a meta-analysis study. Mol. Biol. Rep.39, 1609–1616 (2012). CASPubMed Google Scholar
Annicotte, J.S. et al. The CDK4-pRB-E2F1 pathway controls insulin secretion. Nat. Cell Biol.11, 1017–1023 (2009). CASPubMedPubMed Central Google Scholar
González-Navarro, H. et al. Increased dosage of Ink4-Arf protects against glucose intolerance and insulin resistance associated with aging. Aging Cell12, 102–111 (2013). PubMed Google Scholar
Moreno-Asso, A., Castaño, C., Grilli, A., Novials, A. & Servitja, J.M. Glucose regulation of a cell cycle gene module is selectively lost in mouse pancreatic islets during aging. Diabetologia56, 1761–1772 (2013). CASPubMed Google Scholar
Abella, A. et al. Cdk4 promotes adipogenesis through PPAR-γ activation. Cell Metab.2, 239–249 (2005). CASPubMed Google Scholar
Lee, Y. et al. Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature510, 547–551 (2014). CASPubMedPubMed Central Google Scholar
Ruvinsky, I. et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev.19, 2199–2211 (2005). CASPubMedPubMed Central Google Scholar
Chicas, A. et al. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell17, 376–387 (2010). CASPubMedPubMed Central Google Scholar
Brady, C.A. et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell145, 571–583 (2011). CASPubMedPubMed Central Google Scholar
Acosta, J.C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol.15, 978–990 (2013). CASPubMedPubMed Central Google Scholar
Stolovich-Rain, M. et al. Weaning triggers a maturation step of pancreatic beta cells. Dev. Cell32, 535–545 (2015). CASPubMed Google Scholar
van Arensbergen, J. et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta cells to adopt a neural gene activity program. Genome Res.20, 722–732 (2010). CASPubMedPubMed Central Google Scholar
Holland, A.M., Hale, M.A., Kagami, H., Hammer, R.E. & MacDonald, R.J. Experimental control of pancreatic development and maintenance. Proc. Natl. Acad. Sci. USA99, 12236–12241 (2002). CASPubMedPubMed Central Google Scholar
Gauthier, B.R. et al. PDX1 deficiency causes mitochondrial dysfunction and defective insulin secretion through TFAM suppression. Cell Metab.10, 110–118 (2009). CASPubMedPubMed Central Google Scholar
Wiederkehr, A. & Wollheim, C.B. Mitochondrial signals drive insulin secretion in the pancreatic beta cell. Mol. Cell. Endocrinol.353, 128–137 (2012). CASPubMed Google Scholar
Rane, S.G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta islet cell hyperplasia. Nat. Genet.22, 44–52 (1999). CASPubMed Google Scholar
Wicksteed, B. et al. Conditional gene targeting in mouse pancreatic beta cells: analysis of ectopic Cre transgene expression in the brain. Diabetes59, 3090–3098 (2010). CASPubMedPubMed Central Google Scholar
Scharfmann, R. et al. Development of a conditionally immortalized human pancreatic beta cell line. J. Clin. Invest.124, 2087–2098 (2014). CASPubMedPubMed Central Google Scholar
Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP–dependent translational regulation. Cell Metab.18, 698–711 (2013). CASPubMed Google Scholar
Koyanagi, M. et al. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLoS One6, e23238 (2011). CASPubMedPubMed Central Google Scholar
Fingar, D.C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1-eIF4E. Genes Dev.16, 1472–1487 (2002). CASPubMedPubMed Central Google Scholar
Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta cells are formed by self-duplication rather than by stem cell differentiation. Nature429, 41–46 (2004). CASPubMed Google Scholar
Ohn, J.H. et al. 10-year trajectory of beta cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol.4, 27–34 (2016). CASPubMed Google Scholar
Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell113, 703–716 (2003). CASPubMed Google Scholar
Bandyopadhyay, D. et al. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell6, 577–591 (2007). CASPubMed Google Scholar
Chandra, T. et al. Global reorganization of the nuclear landscape in senescent cells. Cell Reports10, 471–483 (2015). CASPubMed Google Scholar
Giordano, E. et al. Beta cell size influences glucose-stimulated insulin secretion. Am. J. Physiol.265, C358–C364 (1993). CASPubMed Google Scholar
Correia-Melo, C. & Passos, J.F. Mitochondria: are they causal players in cellular senescence? Biochim. Biophys. Acta1847, 1373–1379 (2015). CASPubMed Google Scholar
Nicolay, B.N. et al. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev.29, 1875–1889 (2015). CASPubMedPubMed Central Google Scholar
Avrahami, D. et al. Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved beta cell function. Cell Metab.22, 619–632 (2015). CASPubMedPubMed Central Google Scholar
Ahmadian, M. et al. PPAR-γ signaling and metabolism: the good, the bad and the future. Nat. Med.19, 557–566 (2013). CASPubMed Google Scholar
Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med.22, 78–83 (2016). CASPubMed Google Scholar
Nardella, C., Clohessy, J.G., Alimonti, A. & Pandolfi, P.P. Pro-senescence therapy for cancer treatment. Nat. Rev. Cancer11, 503–511 (2011). CASPubMed Google Scholar
Turner, N.C. et al. Palbociclib in hormone receptor–positive advanced breast cancer. N. Engl. J. Med.373, 209–219 (2015). CASPubMed Google Scholar
Tokarsky-Amiel, R. et al. Dynamics of senescent cell formation and retention revealed by p14ARF induction in the epidermis. Cancer Res.73, 2829–2839 (2013). CASPubMed Google Scholar
Milo-Landesman, D. et al. Correction of hyperglycemia in diabetic mice transplanted with reversibly immortalized pancreatic beta cells controlled by the Tet-on regulatory system. Cell Transplant.10, 645–650 (2001). CASPubMed Google Scholar
Sharpless, N.E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature413, 86–91 (2001). CASPubMed Google Scholar
Nir, T., Melton, D.A. & Dor, Y. Recovery from diabetes in mice by beta cell regeneration. J. Clin. Invest.117, 2553–2561 (2007). CASPubMedPubMed Central Google Scholar
O'Gorman, D. et al. Comparison of human islet isolation outcomes using a new mammalian tissue-free enzyme versus collagenase NB-1. Transplantation90, 255–259 (2010). CASPubMed Google Scholar
Dai, C. et al. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia55, 707–718 (2012). CASPubMed Google Scholar
Walsh, R.M. et al. Improved quality of life following total pancreatectomy and auto–islet transplantation for chronic pancreatitis. J. Gastrointest. Surg.16, 1469–1477 (2012). CASPubMed Google Scholar
Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated β-galactosidase (SA–β-gal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc.4, 1798–1806 (2009). CASPubMed Google Scholar
Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol.31, 46–53 (2013). CASPubMed Google Scholar