Ismail, A., Khosravi, H. & Olson, H. The role of infection in atherosclerosis and coronary artery disease: a new therapeutic target. Heart Dis.1, 233–240 (1999). CAS Google Scholar
Epstein, S.E. et al. Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler. Thromb. Vasc. Biol.20, 1417–1420 (2000). ArticleCAS Google Scholar
Frishman, W.H. & Ismail, A.A. Role of infection in atherosclerosis and coronary artery disease: a new therapeutic target? Cardiol. Rev.10, 199–210 (2002). Article Google Scholar
Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med.340, 115–126 (1999). ArticleCAS Google Scholar
Binder, C.J. et al. Innate and acquired immunity in atherogenesis. Nat. Med.8, 1218–26 (2002). ArticleCAS Google Scholar
Chow, J.C., Young, D.W., Golenbock, D.T., Christ, W.J. & Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem.274, 10689–10692 (1999). ArticleCAS Google Scholar
Xu, X.H. et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation104, 3103–3108 (2001). ArticleCAS Google Scholar
Vink, A. et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation106, 1985–1990 (2002). ArticleCAS Google Scholar
Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.347, 185–192 (2002). ArticleCAS Google Scholar
Edfeldt, K., Swedenborg, J., Hansson, G.K. & Yan, Z.Q. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation105, 1158–1161 (2002). ArticleCAS Google Scholar
Wright, S.D. et al. Infectious agents are not necessary for murine atherogenesis. J. Exp. Med.191, 1437–1442 (2000). ArticleCAS Google Scholar
Tanaka, E. et al. Disparity of MCP-1 mRNA and protein expressions between the carotid artery and the aorta in WHHL rabbits: one aspect involved in the regional difference in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.23, 244–250 (2003). ArticleCAS Google Scholar
Mach, F. The role of chemokines in atherosclerosis. Curr. Atheroscler. Rep.3, 243–251 (2001). ArticleCAS Google Scholar
Burke-Gaffney, A., Brooks, A.V. & Bogle, R.G. Regulation of chemokine expression in atherosclerosis. Vascul. Pharmacol.38, 283–292 (2002). ArticleCAS Google Scholar
Gosling, J. et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest.103, 773–778 (1999). ArticleCAS Google Scholar
Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394, 894–897 (1998). ArticleCAS Google Scholar
Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity9, 143–150 (1998). ArticleCAS Google Scholar
Kirii, H. et al. Lack of interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol.23, 656–660 (2003). ArticleCAS Google Scholar
Elhage, R. et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res.59, 234–240 (2003). ArticleCAS Google Scholar
Bulut, Y. et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol.168, 1435–1440 (2002). ArticleCAS Google Scholar
Walton, K.A. et al. Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein. J. Biol. Chem.278, 29661–29666 (2003). ArticleCAS Google Scholar
Raschi, E. et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood101, 3495–3500 (2003). ArticleCAS Google Scholar
Kanters, E. et al. Inhibition of NF-κB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J. Clin. Invest.112, 1176–1185 (2003). ArticleCAS Google Scholar
Pahl, H.L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene18, 6853–6866 (1999). ArticleCAS Google Scholar
Lawrence, T., Gilroy, D.W., Colville-Nash, P.R. & Willoughby, D.A. Possible new role for NF-κB in the resolution of inflammation. Nat. Med.7, 1291–1297 (2001). ArticleCAS Google Scholar
Moore, K.J. et al. Divergent response to LPS and bacteria in CD14-deficient murine macrophages. J. Immunol.165, 4272–4280 (2000). ArticleCAS Google Scholar
Kunjathoor, V.V., Wilson, D.L. & LeBoeuf, R.C. Increased atherosclerosis in streptozotocin-induced diabetic mice. J. Clin. Invest.97, 1767–1773 (1996). ArticleCAS Google Scholar
Kunjathoor, V.V., Chiu, D.S., O'Brien, K.D. & LeBoeuf, R.C. Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis. Arterioscler. Thromb. Vasc. Biol.22, 462–468 (2002). ArticleCAS Google Scholar
Tangirala, R.K., Rubin, E.M. & Palinski, W. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J. Lipid Res.36, 2320–2328 (1995). CAS Google Scholar
Saal, L.H. et al. BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol.3, SOFTWARE0003 (2002).
Moore, K.J., Naito, T., Martin, C. & Kelley, V.R. Enhanced response of macrophages to CSF-1 in autoimmune mice: a gene transfer strategy. J. Immunol.157, 433–440 (1996). CAS Google Scholar
Kunjathoor, V.V. et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem.277, 49982–49988 (2002). ArticleCAS Google Scholar