Innate and acquired immunity in atherogenesis (original) (raw)
Tuzcu, E.M. et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: Evidence from intravascular ultrasound. Circulation103, 2705–2710 (2001). ArticleCASPubMed Google Scholar
Leitersdorf, E., Tobin, E.J., Davignon, J. & Hobbs, H.H. Common low-density lipoprotein receptor mutations in the French Canadian population. J. Clin. Invest.85, 1014–1023 (1990). ArticleCASPubMedPubMed Central Google Scholar
Hansson, G.K., Libby, P., Schonbeck, U. & Yan, Z.Q. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ. Res.91, 281–291 (2002). ArticleCASPubMed Google Scholar
Hansson, G.K. Immune mechanisms in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.21, 1876–1890 (2001). ArticleCASPubMed Google Scholar
Hörkkö, S. et al. Immunological responses to oxidized LDL. Free Radic. Biol. Med.28, 1771–1779 (2000). ArticlePubMed Google Scholar
Libby, P., Ridker, P.M. & Maseri, A. Inflammation and atherosclerosis. Circulation105, 1135–1143 (2002). ArticleCASPubMed Google Scholar
Williams, K.J. & Tabas, I. The response-to-retention hypothesis of atherogenesis reinforced. Curr. Opin. Lipidol.9, 471–474 (1998). ArticleCASPubMed Google Scholar
Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature417, 750–754 (2002). ArticleCASPubMed Google Scholar
Gaut, J.P. & Heinecke, J.W. Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc. Med.11, 103–112 (2001). ArticleCASPubMed Google Scholar
Pratico, D. Lipid peroxidation in mouse models of atherosclerosis. Trends Cardiovasc. Med.11, 112–116 (2001). ArticleCASPubMed Google Scholar
Colles, S.M., Maxson, J.M., Carlson, S.G. & Chisolm, G.M. Oxidized LDL-induced injury and apoptosis in atherosclerosis. Potential roles for oxysterols. Trends Cardiovasc. Med.11, 131–138 (2001). ArticleCASPubMed Google Scholar
Berliner, J.A., Subbanagounder, G., Leitinger, N., Watson, A.D. & Vora, D. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc. Med.11, 142–147 (2001). ArticleCASPubMed Google Scholar
Witztum, J.L. & Steinberg, D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends Cardiovasc. Med.11, 93–102 (2001). ArticleCASPubMed Google Scholar
Suzuki, H. et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature386, 292–296 (1997). ArticleCASPubMed Google Scholar
Febbraio, M. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Invest.105, 1049–1056 (2000). ArticleCASPubMedPubMed Central Google Scholar
Libby, P., Egan, D. & Skarlatos, S. Roles of infectious agents in atherosclerosis and restenosis: An assessment of the evidence and need for future research. Circulation96, 4095–4103 (1997). ArticleCASPubMed Google Scholar
Landmesser, U. & Harrison, D.G. Oxidant stress as a marker for cardiovascular events—Ox marks the spot. Circulation104, 2638–2640 (2001). ArticleCASPubMed Google Scholar
Dansky, H.M., Charlton, S.A., Harper, M.M. & Smith, J.D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl. Acad. Sci. USA94, 4642–4646 (1997). ArticleCASPubMedPubMed Central Google Scholar
Daugherty, A. et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J. Clin. Invest.100, 1575–1580 (1997). ArticleCASPubMedPubMed Central Google Scholar
Reardon, C.A. et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol.21, 1011–1016 (2001). ArticleCASPubMed Google Scholar
Zhou, X., Nicoletti, A., Elhage, R. & Hansson, G.K. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation102, 2919–2922 (2000). ArticleCASPubMed Google Scholar
Palinski, W., Miller, E. & Witztum, J.L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl. Acad. Sci. USA92, 821–825 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ameli, S. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol.16, 1074–1079 (1996). ArticleCASPubMed Google Scholar
Freigang, S., Hörkkö, S., Miller, E., Witztum, J.L. & Palinski, W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol.18, 1972–1982 (1998). ArticleCASPubMed Google Scholar
George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis138, 147–152 (1998). ArticleCASPubMed Google Scholar
Zhou, X., Caligiuri, G., Hamsten, A., Lefvert, A.K. & Hansson, G.K. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol.21, 108–114 (2001). ArticleCASPubMed Google Scholar
Nicoletti, A., Kaveri, S., Caligiuri, G., Bariaety, J. & Hansson, G.K. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J. Clin. Invest.102, 910–918 (1998). ArticleCASPubMedPubMed Central Google Scholar
Medzhitov, R. & Janeway, C.A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science296, 298–300 (2002). ArticleCASPubMed Google Scholar
Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol.1, 135–145 (2001). ArticleCAS Google Scholar
Gosling, J. et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest.103, 773–778 (1999). ArticleCASPubMedPubMed Central Google Scholar
Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394, 894–897 (1998). ArticleCASPubMed Google Scholar
Smith, J.D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl. Acad. Sci. USA92, 8264–8268 (1995). ArticleCASPubMedPubMed Central Google Scholar
Cybulsky, M.I. & Gimbrone, M.A., Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science251, 788–791 (1991). ArticleCASPubMed Google Scholar
Witztum, J.L. & Berliner, J.A. Oxidized phospholipids and isoprostanes in atherosclerosis. Curr. Opin. Lipidol.9, 441–448 (1998). ArticleCASPubMed Google Scholar
Edfeldt, K., Swedenborg, J., Hansson, G.K. & Yan, Z.Q. Expression of toll-like receptors in human atherosclerotic lesions: A possible pathway for plaque activation. Circulation105, 1158–1161 (2002). ArticleCASPubMed Google Scholar
Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med.347, 185–192 (2002). ArticleCASPubMed Google Scholar
Hubacek, J.A. et al. C(−260)→T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation99, 3218–3220 (1999). ArticleCASPubMed Google Scholar
Li, A.C. & Glass, C.K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med.8, 1235–1242 (2002). ArticleCASPubMed Google Scholar
Vlaicu, R., Niculescu, F., Rus, H.G. & Cristea, A. Immunohistochemical localization of the terminal C5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis57, 163–177 (1985). ArticleCASPubMed Google Scholar
Buono, C. et al. Influence of C3 deficiency on atherosclerosis. Circulation105, 3025–3031 (2002). ArticleCASPubMed Google Scholar
Volanakis, J.E. Human C-reactive protein: Expression, structure, and function. Mol. Immunol.38, 189–197 (2001). ArticleCASPubMed Google Scholar
Yasojima, K., Schwab, C., McGeer, E.G. & McGeer, P.L. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol.158, 1039–1051 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shaw, P.X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest.105, 1731–1740 (2000). ArticleCASPubMedPubMed Central Google Scholar
Vos, Q., Lees, A., Wu, Z.Q., Snapper, C.M. & Mond, J.J. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol. Rev.176, 154–170 (2000). ArticleCASPubMed Google Scholar
Ochsenbein, A.F. et al. Correlation of T cell independence of antibody responses with antigen dose reaching secondary lymphoid organs: Implications for splenectomized patients and vaccine design. J. Immunol.164, 6296–6302 (2000). ArticleCASPubMed Google Scholar
Millonig, G., Schwentner, C., Mueller, P., Mayerl, C. & Wick, G. The vascular-associated lymphoid tissue: A new site of local immunity. Curr. Opin. Lipidol.12, 547–553 (2001). ArticleCASPubMed Google Scholar
Schiller, N.K., Boisvert, W.A. & Curtiss, L.K. Lesion formation in LDL receptor–deficient mice with perforin and _Lyst_beige mutations. Arterioscler. Thromb. Vasc. Biol.22, 1341–1346 (2002). ArticleCASPubMed Google Scholar
Sohma, Y. et al. Accumulation of plasma cells in atherosclerotic lesions of Watanabe heritable hyperlipidemic rabbits. Proc. Natl. Acad. Sci. USA92, 4937–4941 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. & Hansson, G.K. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand. J. Immunol.50, 25–30 (1999). ArticleCASPubMed Google Scholar
Mach, F. et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40-CD40 ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. USA94, 1931–1936 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lutgens, E. et al. Requirement for CD154 in the progression of atherosclerosis. Nature Med.5, 1313–1316 (1999). ArticleCASPubMed Google Scholar
Mach, F., Schönbeck, U., Sukhova, G.K., Atkinson, E. & Libby, P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature394, 200–203 (1998). ArticleCASPubMed Google Scholar
Schönbeck, U., Sukhova, G.K., Shimizu, K., Mach, F. & Libby, P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc. Natl. Acad. Sci. USA97, 7458–7463 (2000). ArticlePubMedPubMed Central Google Scholar
Lutgens, E. et al. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proc. Natl. Acad. Sci. USA97, 7464–7469 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gerdes, N. et al. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for atherogenesis. J. Exp. Med.195, 245–257 (2002). ArticleCASPubMedPubMed Central Google Scholar
Whitman, S.C., Ravisankar, P., Elam, H. & Daugherty, A. Exogenous interferon-γ enhances atherosclerosis in apolipoprotein E−/− mice. Am. J. Pathol.157, 1819–1824 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lee, T.S., Yen, H.C., Pan, C.C. & Chau, L.Y. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol.19, 734–742 (1999). ArticleCASPubMed Google Scholar
Whitman, S.C., Ravisankar, P. & Daugherty, A. Interleukin-18 enhances atherosclerosis in apolipoprotein E−/− mice through release of interferon-γ. Circ. Res.90, E34–E38 (2002). ArticleCASPubMed Google Scholar
Pinderski, L.J. et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ. Res.90, 1064–1071 (2002). ArticleCASPubMed Google Scholar
Laurat, E. et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation104, 197–202 (2001). ArticleCASPubMed Google Scholar
Huber, S.A., Sakkinen, P., David, C., Newell, M.K. & Tracy, R.P. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation103, 2610–2616 (2001). ArticleCASPubMed Google Scholar
King, V.L., Szilvassy S.J. & Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol.22, 456–461 (2002). ArticleCASPubMed Google Scholar
Mallat, Z. et al. Inhibition of transforming growth factor-β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res.89, 930–934 (2001). ArticleCASPubMed Google Scholar
Lutgens, E. et al. Transforming growth factor-β mediates balance between inflammation and fibrosis during plaque progression. Arterioscler. Thromb. Vasc. Biol.22, 975–982 (2002). ArticleCASPubMed Google Scholar
Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G.K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest.109, 745–753 (2002). ArticleCASPubMedPubMed Central Google Scholar
Robinette, C.D. & Fraumeni, J.F., Jr. Splenectomy and subsequent mortality in veterans of the 1939–45 war. Lancet2, 127–129 (1977). ArticleCASPubMed Google Scholar
Paulsson, G., Zhou, X., Tornquist, E. & Hansson, G.K. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol.20, 10–17 (2000). ArticleCASPubMed Google Scholar
George, J. et al. Adoptive transfer of β2-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice. Circulation102, 1822–1827 (2000). ArticleCASPubMed Google Scholar
Beck, J.D., Pankow, J., Tyroler, H.A. & Offenbacher, S. Dental infections and atherosclerosis. Am. Heart J.138, S528–S533 (1999). ArticleCASPubMed Google Scholar
Wick, G., Perschinka, H. & Millonig, G. Atherosclerosis as an autoimmune disease: An update. Trends Immunol.22, 665–669 (2001). ArticleCASPubMed Google Scholar
Mayr, M., Kiechl, S., Willeit, J., Wick, G. & Xu, Q. Infections, immunity, and atherosclerosis: Associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation102, 833–839 (2000). ArticleCASPubMed Google Scholar
Afek, A. et al. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J. Autoimmun.14, 115–121 (2000). ArticleCASPubMed Google Scholar
Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation106, 1708–1715 (2002). ArticleCASPubMed Google Scholar
Palinski, W. & Witztum, J.L. Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J. Intern. Med.247, 371–380 (2000). ArticleCASPubMed Google Scholar
Gillotte, K.L., Hörkkö, S., Witztum, J.L. & Steinberg, D. Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors. J. Lipid Res.41, 824–833 (2000). CASPubMed Google Scholar
Friedman, P., Hörkkö, S., Steinberg, D., Witztum, J.L. & Dennis, E.A. Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol concentration. J. Biol. Chem.277, 7010–7020 (2002). ArticleCASPubMed Google Scholar
Ylä-Herttuala, S. et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb.14, 32–40 (1994). ArticlePubMed Google Scholar
Cyrus, T. et al. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice. Circulation103, 2277–2282 (2001). ArticleCASPubMed Google Scholar
Tsimikas, S., Palinski, W. & Witztum, J.L. Circulating autoantibodies to oxidized LDL correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol.21, 95–100 (2001). ArticleCASPubMed Google Scholar
Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA92, 3893–3897 (1995). ArticleCASPubMedPubMed Central Google Scholar
Palinski, W. et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Invest.98, 800–814 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hörkkö, S. et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J. Clin. Invest.103, 117–128 (1999). ArticlePubMedPubMed Central Google Scholar
Gillotte-Taylor, K., Boullier, A., Witztum, J.L., Steinberg, D. & Quehenberger, O. Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein. J. Lipid Res.42, 1474–1482 (2001). CASPubMed Google Scholar
Boullier, A. et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein. J. Biol. Chem.275, 9163–9169 (2000). ArticleCASPubMed Google Scholar
Podrez, E.A. et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem.277, 38503–38516 (2002). ArticleCASPubMed Google Scholar
Podrez, E.A. et al. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J. Biol. Chem.277, 38517–38523 (2002). ArticleCASPubMed Google Scholar
Chang, M.K. et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: Evidence that oxidation-specific epitopes mediate macrophage recognition. Proc. Natl. Acad. Sci. USA96, 6353–6358 (1999). ArticleCASPubMedPubMed Central Google Scholar
Briles, D.E., Forman, C., Hudak, S. & Claflin, J.L. Anti-phosphorylcholine antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J. Exp. Med.156, 1177–1185 (1982). ArticleCASPubMed Google Scholar
Gershov, D., Kim, S., Brot, N. & Elkon, K.B. C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an antiinflammatory innate immune response: Implications for systemic autoimmunity. J. Exp. Med.192, 1353–1364 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chang, M.K., Binder, C.J., Torzewski, M. & Witztum, J.L. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc. Natl. Acad. Sci. USA99, 13043–13048 (2002). ArticleCASPubMedPubMed Central Google Scholar