Moore, J.V., Hendry, J.H. & Hunter, R.D. Dose-incidence curves for tumour control and normal tissue injury, in relation to the response of clonogenic cells. Radiother. Oncol.1, 143–157 (1983). ArticleCASPubMed Google Scholar
Trott, K.R. Tumour stem cells: the biological concept and its application in cancer treatment. Radiother. Oncol.30, 1–5 (1994). ArticleCASPubMed Google Scholar
Bach, S.P., Renehan, A.G. & Potten, C.S. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis21, 469–476 (2000). ArticleCASPubMed Google Scholar
Budach, W., Taghian, A., Freeman, J., Gioioso, D. & Suit, H.D. Impact of stromal sensitivity on radiation response of tumors. J. Natl. Cancer Inst.85, 988–993 (1993). ArticleCASPubMed Google Scholar
Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev.15, 2177–2196 (2001). ArticleCASPubMed Google Scholar
Khanna, K.K., Lavin, M.F., Jackson, S.P. & Mulhern, T.D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ.8, 1052–1065 (2001). ArticleCASPubMed Google Scholar
Jackson, S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis23, 687–696 (2002). ArticleCASPubMed Google Scholar
Valerie, K. & Povirk, L.F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene22, 5792–5812 (2003). ArticleCASPubMed Google Scholar
Powell, S.N. & Kachnic, L.A. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene22, 5784–5791 (2003). ArticleCASPubMed Google Scholar
Bedford, J.S., Mitchell, J.B., Griggs, H.G. & Bender, M.A. Radiation-induced cellular reproductive death and chromosome aberrations. Radiat. Res.76, 573–586 (1978). ArticleCASPubMed Google Scholar
Chu, K. et al. Computerized video time-lapse (CVTL) analysis of cell death kinetics in human bladder carcinoma cells (EJ30) X-irradiated in different phases of the cell cycle. Radiat. Res.158, 667–677 (2002). ArticleCASPubMed Google Scholar
Brown, J.M. & Wilson, G. Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us? Cancer Biol. Ther.2, 477–490 (2003). ArticleCASPubMed Google Scholar
Morita, Y. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat. Med.6, 1109–1114 (2000). ArticleCASPubMed Google Scholar
Paris, F. et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science293, 293–297 (2001). ArticleCASPubMed Google Scholar
Maj, J.G. et al. Microvascular function regulates intestinal crypt response to radiation. Cancer Res.63, 4338–4341 (2003). CASPubMed Google Scholar
Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science300, 1155–1159 (2003). ArticleCASPubMed Google Scholar
Gordon, J.I. & Hermiston, M.L. Differentiation and self-renewal in the mouse gastrointestinal epithelium. Curr. Opin. Cell Biol.6, 795–803 (1994). ArticleCASPubMed Google Scholar
Potten, C.S., Booth, C. & Pritchard, D.M. The intestinal epithelial stem cell: the mucosal governor. Int. J. Exp. Pathol.78, 219–243 (1997). ArticleCASPubMedPubMed Central Google Scholar
Potten, C.S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci.115, 2381–2388 (2002). CASPubMed Google Scholar
Brittan, M. & Wright, N.A. Gastrointestinal stem cells. J Pathol.197, 492–509 (2002). ArticlePubMed Google Scholar
Chwalinski, S., Potten, C.S. & Evans, G. Double labelling with bromodeoxyuridine and [3H]-thymidine of proliferative cells in small intestinal epithelium in steady state and after irradiation. Cell Tissue Kinet.21, 317–329 (1988). CASPubMed Google Scholar
Potten, C.S. A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int. J. Radiat. Biol.58, 925–973 (1990). ArticleCASPubMed Google Scholar
Withers, H.R. & Elkind, M.M. Radiosensitivity and fractionation response of crypt cells of mouse jejunum. Radiat. Res.38, 598–613 (1969). ArticleCASPubMed Google Scholar
Liao, W.C. et al. Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J. Biol. Chem.274, 17908–17917 (1999). ArticleCASPubMed Google Scholar
Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell86, 159–171 (1996). ArticleCASPubMed Google Scholar
Westphal, C.H. et al. Loss of atm radiosensitizes multiple p53 null tissues. Cancer Res.58, 5637–5639 (1998). CASPubMed Google Scholar
Westphal, C.H. et al. Atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat. Genet.16, 397–401 (1997). ArticleCASPubMed Google Scholar
Herzog, K.H., Chong, M.J., Kapsetaki, M., Morgan, J.I. & McKinnon, P.J. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science280, 1089–1091 (1998). ArticleCASPubMed Google Scholar
Santana, P. et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell86, 189–199 (1996). ArticleCASPubMed Google Scholar
Kaplan, E.L. & Meier, P. Nonparametric estimation from incomplete observation. J. Am. Stat. Assoc.53, 457–481 (1958). Article Google Scholar
Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep.50, 163–170 (1966). CASPubMed Google Scholar
Haimovitz-Friedman, A. et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med.186, 1831–1841 (1997). ArticleCASPubMedPubMed Central Google Scholar