Direct access to CD4+ T cells specific for defined antigens according to CD154 expression (original) (raw)
References
Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science274, 94–96 (1996). ArticleCAS Google Scholar
Casares, S., Bona, C.A. & Brumeanu, T.D. Enzymatically mediated engineering of multivalent MHC class II-peptide chimeras. Protein Eng.14, 195–200 (2001). ArticleCAS Google Scholar
Casares, S. et al. Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide-MHC class II chimera. Nat. Immunol.3, 383–391 (2002). ArticleCAS Google Scholar
Hackett, C.J. & Sharma, O.K. Frontiers in peptide-MHC class II multimer technology. Nat. Immunol.3, 887–889 (2002). ArticleCAS Google Scholar
Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S. & Radbruch, A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA92, 1921–1925 (1995). ArticleCAS Google Scholar
Waldrop, S.L., Pitcher, C.J., Peterson, D.M., Maino, V.C. & Picker, L.J. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest.99, 1739–1750 (1997). ArticleCAS Google Scholar
Suni, M.A., Picker, L.J. & Maino, V.C. Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. J. Immunol. Methods212, 89–98 (1998). ArticleCAS Google Scholar
Brosterhus, H. et al. Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur. J. Immunol.29, 4053–4059 (1999). ArticleCAS Google Scholar
Maino, V.C., Suni, M.A. & Ruitenberg, J.J. Rapid flow cytometric method for measuring lymphocyte subset activation. Cytometry20, 127–133 (1995). ArticleCAS Google Scholar
Kahi, S. et al. A rapid flow cytometric method to explore cellular immunity against Toxoplasma gondii in humans. Clin. Diagn. Lab. Immunol.5, 745–748 (1998). CASPubMedPubMed Central Google Scholar
Michalek, J. et al. Definitive separation of graft-versus-leukemia- and graft-versus-host-specific CD4+ T cells by virtue of their receptor beta loci sequences. Proc. Natl. Acad. Sci. USA100, 1180–1184 (2003). ArticleCAS Google Scholar
Thiel, A., Scheffold, A. & Radbruch, A. Antigen-specific cytometry–new tools arrived!. Clin. Immunol.111, 155–161 (2004). ArticleCAS Google Scholar
Armitage, R.J. et al. Molecular and biological characterization of a murine ligand for CD40. Nature357, 80–82 (1992). ArticleCAS Google Scholar
Graf, D., Korthauer, U., Mages, H.W., Senger, G. & Kroczek, R.A. Cloning of TRAP, a ligand for CD40 on human T cells. Eur. J. Immunol.22, 3191–3194 (1992). ArticleCAS Google Scholar
Yellin, M.J. et al. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J. Immunol.152, 598–608 (1994). CASPubMed Google Scholar
Misumi, Y., Miki, K., Takatsuki, A., Tamura, G. & Ikehara, Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem.261, 11398–11403 (1986). CASPubMed Google Scholar
Choi, Y.W. et al. Interaction of Staphylococcus aureus toxin “superantigens” with human T cells. Proc. Natl. Acad. Sci. USA86, 8941–8945 (1989). ArticleCAS Google Scholar
Hong, S.C., Waterbury, G. & Janeway, C.A., Jr. Different superantigens interact with distinct sites in the Vbeta domain of a single T cell receptor. J. Exp. Med.183, 1437–1446 (1996). ArticleCAS Google Scholar
Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science250, 1720–1723 (1990). ArticleCAS Google Scholar
Lindgren, H., Axcrona, K. & Leanderson, T. Regulation of transcriptional activity of the murine CD40 ligand promoter in response to signals through TCR and the costimulatory molecules CD28 and CD2. J. Immunol.166, 4578–4585 (2001). ArticleCAS Google Scholar
Stinski, M.F. Sequence of protein synthesis in cells infected by human cytomegalovirus: early and late virus-induced polypeptides. J. Virol.26, 686–701 (1978). CASPubMedPubMed Central Google Scholar
Wills, M.R. et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J. Virol.70, 7569–7579 (1996). CASPubMedPubMed Central Google Scholar
Beninga, J., Kropff, B. & Mach, M. Comparative analysis of fourteen individual human cytomegalovirus proteins for helper T cell response. J. Gen. Virol.76, 153–160 (1995). ArticleCAS Google Scholar
Czerkinsky, C.C., Nilsson, L.A., Nygren, H., Ouchterlony, O. & Tarkowski, A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods65, 109–121 (1983). ArticleCAS Google Scholar
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature401, 708–712 (1999). ArticleCAS Google Scholar
Ludewig, B., Henn, V., Schroder, J.M., Graf, D. & Kroczek, R.A. Induction, regulation, and function of soluble TRAP (CD40 ligand) during interaction of primary CD4+ CD45RA+ T cells with dendritic cells. Eur. J. Immunol.26, 3137–3143 (1996). ArticleCAS Google Scholar