Direct access to CD4+ T cells specific for defined antigens according to CD154 expression (original) (raw)

References

  1. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).
    Article CAS Google Scholar
  2. Casares, S., Bona, C.A. & Brumeanu, T.D. Enzymatically mediated engineering of multivalent MHC class II-peptide chimeras. Protein Eng. 14, 195–200 (2001).
    Article CAS Google Scholar
  3. Casares, S. et al. Down-regulation of diabetogenic CD4+ T cells by a soluble dimeric peptide-MHC class II chimera. Nat. Immunol. 3, 383–391 (2002).
    Article CAS Google Scholar
  4. Hackett, C.J. & Sharma, O.K. Frontiers in peptide-MHC class II multimer technology. Nat. Immunol. 3, 887–889 (2002).
    Article CAS Google Scholar
  5. Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S. & Radbruch, A. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA 92, 1921–1925 (1995).
    Article CAS Google Scholar
  6. Waldrop, S.L., Pitcher, C.J., Peterson, D.M., Maino, V.C. & Picker, L.J. Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest. 99, 1739–1750 (1997).
    Article CAS Google Scholar
  7. Suni, M.A., Picker, L.J. & Maino, V.C. Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. J. Immunol. Methods 212, 89–98 (1998).
    Article CAS Google Scholar
  8. Brosterhus, H. et al. Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur. J. Immunol. 29, 4053–4059 (1999).
    Article CAS Google Scholar
  9. Maino, V.C., Suni, M.A. & Ruitenberg, J.J. Rapid flow cytometric method for measuring lymphocyte subset activation. Cytometry 20, 127–133 (1995).
    Article CAS Google Scholar
  10. Kahi, S. et al. A rapid flow cytometric method to explore cellular immunity against Toxoplasma gondii in humans. Clin. Diagn. Lab. Immunol. 5, 745–748 (1998).
    CAS PubMed PubMed Central Google Scholar
  11. Michalek, J. et al. Definitive separation of graft-versus-leukemia- and graft-versus-host-specific CD4+ T cells by virtue of their receptor beta loci sequences. Proc. Natl. Acad. Sci. USA 100, 1180–1184 (2003).
    Article CAS Google Scholar
  12. Thiel, A., Scheffold, A. & Radbruch, A. Antigen-specific cytometry–new tools arrived!. Clin. Immunol. 111, 155–161 (2004).
    Article CAS Google Scholar
  13. Armitage, R.J. et al. Molecular and biological characterization of a murine ligand for CD40. Nature 357, 80–82 (1992).
    Article CAS Google Scholar
  14. Graf, D., Korthauer, U., Mages, H.W., Senger, G. & Kroczek, R.A. Cloning of TRAP, a ligand for CD40 on human T cells. Eur. J. Immunol. 22, 3191–3194 (1992).
    Article CAS Google Scholar
  15. Yellin, M.J. et al. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J. Immunol. 152, 598–608 (1994).
    CAS PubMed Google Scholar
  16. Misumi, Y., Miki, K., Takatsuki, A., Tamura, G. & Ikehara, Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261, 11398–11403 (1986).
    CAS PubMed Google Scholar
  17. Choi, Y.W. et al. Interaction of Staphylococcus aureus toxin “superantigens” with human T cells. Proc. Natl. Acad. Sci. USA 86, 8941–8945 (1989).
    Article CAS Google Scholar
  18. Hong, S.C., Waterbury, G. & Janeway, C.A., Jr. Different superantigens interact with distinct sites in the Vbeta domain of a single T cell receptor. J. Exp. Med. 183, 1437–1446 (1996).
    Article CAS Google Scholar
  19. Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).
    Article CAS Google Scholar
  20. Lindgren, H., Axcrona, K. & Leanderson, T. Regulation of transcriptional activity of the murine CD40 ligand promoter in response to signals through TCR and the costimulatory molecules CD28 and CD2. J. Immunol. 166, 4578–4585 (2001).
    Article CAS Google Scholar
  21. Stinski, M.F. Sequence of protein synthesis in cells infected by human cytomegalovirus: early and late virus-induced polypeptides. J. Virol. 26, 686–701 (1978).
    CAS PubMed PubMed Central Google Scholar
  22. Wills, M.R. et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J. Virol. 70, 7569–7579 (1996).
    CAS PubMed PubMed Central Google Scholar
  23. Beninga, J., Kropff, B. & Mach, M. Comparative analysis of fourteen individual human cytomegalovirus proteins for helper T cell response. J. Gen. Virol. 76, 153–160 (1995).
    Article CAS Google Scholar
  24. Czerkinsky, C.C., Nilsson, L.A., Nygren, H., Ouchterlony, O. & Tarkowski, A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods 65, 109–121 (1983).
    Article CAS Google Scholar
  25. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).
    Article CAS Google Scholar
  26. Ludewig, B., Henn, V., Schroder, J.M., Graf, D. & Kroczek, R.A. Induction, regulation, and function of soluble TRAP (CD40 ligand) during interaction of primary CD4+ CD45RA+ T cells with dendritic cells. Eur. J. Immunol. 26, 3137–3143 (1996).
    Article CAS Google Scholar

Download references