Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis (original) (raw)

References

  1. Cotsarelis, G., Sun, T.T. & Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).
    Article CAS Google Scholar
  2. Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003).
    Article CAS Google Scholar
  3. Mackenzie, I.C. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J. Invest. Dermatol. 109, 377–383 (1997).
    Article CAS Google Scholar
  4. Potten, C.S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 7, 77–88 (1974).
    CAS PubMed Google Scholar
  5. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).
    Article CAS Google Scholar
  6. Lavker, R.M. & Sun, T.T. Epidermal stem cells: properties, markers, and location. Proc. Natl. Acad. Sci. USA 97, 13473–13475 (2000).
    Article CAS Google Scholar
  7. Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci. 111, 3179–3188 (1998).
    CAS PubMed Google Scholar
  8. Morris, R.J. & Potten, C.S. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol. 112, 470–475 (1999).
    Article CAS Google Scholar
  9. Morris, R.J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).
    Article CAS Google Scholar
  10. Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T. & Lavker, R.M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).
    Article CAS Google Scholar
  11. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).
    Article CAS Google Scholar
  12. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).
    Article CAS Google Scholar
  13. Ghazizadeh, S. & Taichman, L.B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 20, 1215–1222 (2001).
    Article CAS Google Scholar
  14. Argyris, T. Kinetics of epidermal production during epidermal regeneration following abrasion in mice. Am. J. Pathol. 83, 329–340 (1976).
    CAS PubMed PubMed Central Google Scholar
  15. Miller, S.J., Burke, E.M., Rader, M.D., Coulombe, P.A. & Lavker, R.M. Re-epithelialization of porcine skin by the sweat apparatus. J. Invest. Dermatol. 110, 13–19 (1998).
    Article CAS Google Scholar
  16. Morasso, M.I. & Tomic-Canic, M. Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol. Cell. 97, 173–183 (2005).
    Article CAS Google Scholar
  17. Borrelli, E., Heyman, R., Hsi, M. & Evans, R.M. Targeting of an inducible toxic phenotype in animal cells. Proc. Natl. Acad. Sci. USA 85, 7572–7576 (1988).
    Article CAS Google Scholar
  18. Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).
    Article CAS Google Scholar
  19. McGowan, K.M. & Coulombe, P.A. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J. Cell Biol. 143, 469–486 (1998).
    Article CAS Google Scholar
  20. Watt, F.M. & Hogan, B.L. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000).
    Article CAS Google Scholar
  21. Fraidenraich, D. et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science 306, 247–252 (2004).
    Article CAS Google Scholar
  22. Mackenzie, I.C. Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature 226, 653–655 (1970).
    Article CAS Google Scholar
  23. Ferraris, C., Chevalier, G., Favier, B., Jahoda, C.A. & Dhouailly, D. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development 127, 5487–5495 (2000).
    CAS PubMed Google Scholar
  24. Li, A., Pouliot, N., Redvers, R. & Kaur, P. Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J. Clin. Invest. 113, 390–400 (2004).
    Article CAS Google Scholar
  25. Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72, 548–557 (2004).
    Article Google Scholar
  26. Van Mater, D., Kolligs, F.T., Dlugosz, A.A. & Fearon, E.R. Transient activation of β-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 17, 1219–1224 (2003).
    Article CAS Google Scholar
  27. Domashenko, A., Gupta, S. & Cotsarelis, G. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat. Biotechnol. 18, 420–423 (2000).
    Article CAS Google Scholar
  28. Ito, M. & Kizawa, K. Expression of calcium-binding S100 proteins A4 and A6 in regions of the epithelial sac associated with the onset of hair follicle regeneration. J. Invest. Dermatol. 116, 956–963 (2001).
    Article CAS Google Scholar

Download references