Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis (original) (raw)
References
Cotsarelis, G., Sun, T.T. & Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell61, 1329–1337 (1990). ArticleCAS Google Scholar
Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol.121, 963–968 (2003). ArticleCAS Google Scholar
Mackenzie, I.C. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J. Invest. Dermatol.109, 377–383 (1997). ArticleCAS Google Scholar
Potten, C.S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet.7, 77–88 (1974). CASPubMed Google Scholar
Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell116, 769–778 (2004). ArticleCAS Google Scholar
Lavker, R.M. & Sun, T.T. Epidermal stem cells: properties, markers, and location. Proc. Natl. Acad. Sci. USA97, 13473–13475 (2000). ArticleCAS Google Scholar
Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell Sci.111, 3179–3188 (1998). CASPubMed Google Scholar
Morris, R.J. & Potten, C.S. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol.112, 470–475 (1999). ArticleCAS Google Scholar
Morris, R.J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol.22, 411–417 (2004). ArticleCAS Google Scholar
Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T. & Lavker, R.M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell102, 451–461 (2000). ArticleCAS Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). ArticleCAS Google Scholar
Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell104, 233–245 (2001). ArticleCAS Google Scholar
Ghazizadeh, S. & Taichman, L.B. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J.20, 1215–1222 (2001). ArticleCAS Google Scholar
Argyris, T. Kinetics of epidermal production during epidermal regeneration following abrasion in mice. Am. J. Pathol.83, 329–340 (1976). CASPubMedPubMed Central Google Scholar
Miller, S.J., Burke, E.M., Rader, M.D., Coulombe, P.A. & Lavker, R.M. Re-epithelialization of porcine skin by the sweat apparatus. J. Invest. Dermatol.110, 13–19 (1998). ArticleCAS Google Scholar
Morasso, M.I. & Tomic-Canic, M. Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol. Cell.97, 173–183 (2005). ArticleCAS Google Scholar
Borrelli, E., Heyman, R., Hsi, M. & Evans, R.M. Targeting of an inducible toxic phenotype in animal cells. Proc. Natl. Acad. Sci. USA85, 7572–7576 (1988). ArticleCAS Google Scholar
Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell118, 635–648 (2004). ArticleCAS Google Scholar
McGowan, K.M. & Coulombe, P.A. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development. J. Cell Biol.143, 469–486 (1998). ArticleCAS Google Scholar
Watt, F.M. & Hogan, B.L. Out of Eden: stem cells and their niches. Science287, 1427–1430 (2000). ArticleCAS Google Scholar
Fraidenraich, D. et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science306, 247–252 (2004). ArticleCAS Google Scholar
Mackenzie, I.C. Relationship between mitosis and the ordered structure of the stratum corneum in mouse epidermis. Nature226, 653–655 (1970). ArticleCAS Google Scholar
Ferraris, C., Chevalier, G., Favier, B., Jahoda, C.A. & Dhouailly, D. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development127, 5487–5495 (2000). CASPubMed Google Scholar
Li, A., Pouliot, N., Redvers, R. & Kaur, P. Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J. Clin. Invest.113, 390–400 (2004). ArticleCAS Google Scholar
Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation72, 548–557 (2004). Article Google Scholar
Van Mater, D., Kolligs, F.T., Dlugosz, A.A. & Fearon, E.R. Transient activation of β-catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev.17, 1219–1224 (2003). ArticleCAS Google Scholar
Domashenko, A., Gupta, S. & Cotsarelis, G. Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex. Nat. Biotechnol.18, 420–423 (2000). ArticleCAS Google Scholar
Ito, M. & Kizawa, K. Expression of calcium-binding S100 proteins A4 and A6 in regions of the epithelial sac associated with the onset of hair follicle regeneration. J. Invest. Dermatol.116, 956–963 (2001). ArticleCAS Google Scholar