Requirement for CD44 in homing and engraftment of BCR-ABL–expressing leukemic stem cells (original) (raw)

References

  1. Deisseroth, A.B. et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83, 3068–3076 (1994).
    CAS PubMed Google Scholar
  2. Wang, J.C. & Dick, J.E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).
    Article CAS PubMed Google Scholar
  3. Jamieson, C.H.M. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).
    Article CAS PubMed Google Scholar
  4. Li, S., Ilaria, R.L., Million, R.P., Daley, G.Q. & Van Etten, R.A. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J. Exp. Med. 189, 1399–1412 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  5. Huntly, B.J. et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).
    Article CAS PubMed Google Scholar
  6. Graham, S.M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325 (2002).
    Article CAS PubMed Google Scholar
  7. Verfaillie, C.M. et al. BCR/ABL-negative primitive progenitors suitable for transplantation can be selected from the marrow of most early-chronic phase but not accelerated-phase chronic myelogenous leukemia patients. Blood 87, 4770–4779 (1996).
    CAS PubMed Google Scholar
  8. Luger, S.M. et al. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 99, 1150–1158 (2002).
    Article CAS PubMed Google Scholar
  9. Barnett, M.J. et al. Autografting with cultured marrow in chronic myeloid leukemia: results of a pilot study. Blood 84, 724–732 (1994).
    CAS PubMed Google Scholar
  10. Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).
    Article CAS PubMed Google Scholar
  11. Mazo, I.B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  12. Papayannopoulou, T., Priestley, G.V., Nakamoto, B., Zafiropoulos, V. & Scott, L.M. Molecular pathways in bone marrow homing: dominant role of α4β1 over β2-integrins and selectins. Blood 98, 2403–2411 (2001).
    Article CAS PubMed Google Scholar
  13. Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289–3296 (2000).
    CAS PubMed Google Scholar
  14. Bhatia, R. & Verfaillie, C.M. Inhibition of BCR-ABL expression with antisense oligodeoxynucleotides restores β1 integrin–mediated adhesion and proliferation inhibition in chronic myelogenous leukemia hematopoietic progenitors. Blood 91, 3414–3422 (1998).
    CAS PubMed Google Scholar
  15. Salgia, R. et al. The BCR/ABL oncogene alters the chemotactic response to stromal-derived factor-1a. Blood 94, 4233–4246 (1999).
    CAS PubMed Google Scholar
  16. Krause, D.S., von Andrian, U.H. & Van Etten, R.A. Selectins and their ligands are required for homing and engraftment of BCR-ABL+ leukemia-initiating cells. Blood 106, (Suppl. 1), 206a (2005).
    Google Scholar
  17. Dimitroff, C.J., Lee, J.Y., Fuhlbrigge, R.C. & Sackstein, R. A distinct glycoform of CD44 is an L-selectin ligand on human hematopoietic cells. Proc. Natl. Acad. Sci. USA 97, 13841–13846 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  18. Katayama, Y., Hidalgo, A., Chang, J., Peired, A. & Frenette, P.S. CD44 is a physiological E-selectin ligand on neutrophils. J. Exp. Med. 201, 1183–1189 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  19. Ghaffari, S., Dougherty, G.J., Lansdorp, P.M., Eaves, A.C. & Eaves, C.J. Differentiation-associated changes in CD44 isoform expression during normal hematopoiesis and their alteration in chronic myeloid leukemia. Blood 86, 2976–2985 (1995).
    CAS PubMed Google Scholar
  20. Protin, U., Schweighoffer, T., Jochum, W. & Hilberg, F. CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets. J. Immunol. 163, 4917–4923 (1999).
    CAS PubMed Google Scholar
  21. Roumiantsev, S., de Aos, I., Varticovski, L., Ilaria, R.L. & Van Etten, R.A. The Src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 97, 4–13 (2001).
    Article CAS PubMed Google Scholar
  22. Schmits, R. et al. CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90, 2217–2233 (1997).
    CAS PubMed Google Scholar
  23. Oostendorp, R.A., Ghaffari, S. & Eaves, C.J. Kinetics of in vivo homing and recruitment into cycle of hematopoietic cells are organ-specific but CD44-independent. Bone Marrow Transplant. 26, 559–566 (2000).
    Article CAS PubMed Google Scholar
  24. Li, S. et al. Interleukin-3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 97, 1442–1450 (2001).
    Article CAS PubMed Google Scholar
  25. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  26. Mazurier, F., Doedens, M., Gan, O.I. & Dick, J.E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat. Med. 9, 959–963 (2003).
    Article CAS PubMed Google Scholar
  27. Ponta, H., Sherman, L. & Herrlich, P.A. CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4, 33–45 (2003).
    Article CAS PubMed Google Scholar
  28. Vermeulen, M. et al. Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells. Blood 92, 894–900 (1998).
    CAS PubMed Google Scholar
  29. Khaldoyanidi, S., Denzel, A. & Zoller, M. Requirement for CD44 in proliferation and homing of hematopoietic precursor cells. J. Leukoc. Biol. 60, 579–592 (1996).
    Article CAS PubMed Google Scholar
  30. Avigdor, A. et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 103, 2981–2989 (2004).
    Article CAS PubMed Google Scholar

Download references