PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization (original) (raw)

References

  1. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Dev. 13, 1501–1512 (1999).
    Article CAS Google Scholar
  2. Polyak, K. et al. p27 Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes & Dev. 8, 9–22 (1994).
    Article CAS Google Scholar
  3. Philipp-Staheli, J., Payne, S.R. & Kemp, C.J. p27Kip1: Regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res. 264, 148–168 (2001).
    Article CAS PubMed Google Scholar
  4. Hengst, L. & Reed, S.I. Translational control of p27 Kip1accumulation during the cell cycle. Science 271, 1861–1864 (1996).
    Article CAS PubMed Google Scholar
  5. Kato, J.Y., Matsuoka, M., Polyak, K., Massague, J. & Sherr, C.J. Cyclic AMP–induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell 79, 487–496 (1994).
    Article CAS PubMed Google Scholar
  6. Lane, H.A. et al. ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1-Cdk2 complex formation: Receptor overexpression does not determine growth dependency. Mol. Cell. Biol. 20, 3210–3223 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  7. Yang, H.Y., Zhou, B.P., Hung, M.C. & Lee, M.H. Oncogenic signals of HER-2/neu in regulating the stability of the cyclin-dependent kinase inhibitor p27. J. Biol. Chem. 275, 24735–24739 (2000).
    Article CAS PubMed Google Scholar
  8. Lenferink, A.E.G., Busse, D., Flanagan, W.M., Yakes, F.M. & Arteaga, C.L. Erb B2/neu kinase modulates cellular p27 Kip1and cyclin D1 through multiple signaling pathways. Cancer Res. 61, 6583–6591 (2001).
    CAS PubMed Google Scholar
  9. Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes & Dev. 13, 1181–1189 (1999).
    Article CAS Google Scholar
  10. Shirane, M. et al. Down-regulation of p27Kip1by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem. 274, 13886–13893 (1999).
    Article CAS PubMed Google Scholar
  11. Pérez-Roger, I., Solomon, D.L.C., Sewing, A. & Land, H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27Kip1 binding to newly formed complexes. Oncogene 14, 2373–2381 (1997).
    Article PubMed Google Scholar
  12. Sheaff, R.J., Groudine, M., Gordon, M., Roberts, J.M. & Clurman, B.E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes & Dev. 11, 1464–1478 (1997).
    Article CAS Google Scholar
  13. Carrano, A.C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).
    Article CAS PubMed Google Scholar
  14. Sutterlüty, H. et al. p45Skp2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).
    Article PubMed Google Scholar
  15. Vanhaesebroeck, B. & Alessi, D.R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J. 346, 561–576 (2000).
    CAS PubMed PubMed Central Google Scholar
  16. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. . Interleukin-3-induced phosphorylation of bad through the protein kinase Akt. Science 278, 687–698 (1997).
    Article CAS PubMed Google Scholar
  17. Cardone, M.H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318–1321 (1998).
    Article CAS PubMed Google Scholar
  18. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96, 857–868 (1999).
    Article CAS PubMed Google Scholar
  19. Medema, R.H., Kops, G.J., Bos, J.L. & Burgering, B.M.T. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27Kip1. Nature 404, 782–787 (2000).
    Article CAS PubMed Google Scholar
  20. Romashkova, J.A. & Marakov, S.S. NF-κB is a target of Akt in anti-apoptotic PDGF signaling. Nature 401, 86–90 (1999)
    Article CAS PubMed Google Scholar
  21. Zhou, B.P., Liao, Y., Xia, W., Zou, Y., Spohn, B. & Hung, M.C. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).
    Article CAS PubMed Google Scholar
  22. Brennan, P. et al. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7, 679–689 (1997).
    Article CAS PubMed Google Scholar
  23. Ahmed, N.N., Grimes, H.L., Bellacosa, A., Chan, T.O. & Tsichlis, P.N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. 94, 3627–3632 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  24. Diehl, J.A., Cheng, M., Roussel, M.F. & Sherr, C.J. Glycogen synthase kinase-3b regulates cyclin D1 proteolysis and subcellular localization. Genes & Dev. 12, 3499–3511 (1998).
    Article CAS Google Scholar
  25. Zhou, B.P., Liao, Y., Xia, W. Spohn, B., Lee, M.H. & Hung, M.C. Cytoplasmic localization of p21Cip/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol. 3, 245–252 (2001).
    Article CAS PubMed Google Scholar
  26. Kotani, K. et al. Dominant negative forms of Akt (protein kinase B) and atypical protein kinase Cλ do not prevent insulin inhibition of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 274, 21305–21312 (1999).
    Article CAS PubMed Google Scholar
  27. Ishida, N., Kitagawa, M., Hatakeyama, S. & Nakayama, K. Phosphorylation at serine 10, a major phosphorylation site of p27Kip1, increases its protein stability. J. Biol. Chem. 275, 25146–25154 (2000).
    Article CAS PubMed Google Scholar
  28. Baldassarre, D. et al. Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells. J. Clin. Invest. 104, 865–874 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  29. Sánchez-Beato, M. et al., Anomalous High p27/KIP1 Expression in a subset of aggressive B-cell lymphomas is associated with cyclin D3 overexpression. p27/KIP1-cyclin D3 colocalization in tumor cells. Blood 94, 765–772 (1999).
    PubMed Google Scholar
  30. Singh, S.P. et al. Loss or altered subcellular localization of p27 in Barrett's associated adenocarcinoma. Cancer Res. 58, 1730–1735 (1998).
    CAS PubMed Google Scholar
  31. Ciaparrone, M. et al. Localization and expression of p27Kip1 in multistage colorectal carcinogenesis. Cancer Res. 58, 114–122 (1998).
    CAS PubMed Google Scholar
  32. Yaroslavskiy, B., Watkins, S., Donnenberg, A.D., Patton, T.J. & Steinman, R.A. Subcellular and cell-cycle expression profiles of CDK-inhibitors in normal differentiating myeloid cells. Blood 93, 2907–2917 (1999).
    CAS PubMed Google Scholar
  33. Orend, G., Hunter, T. & Ruoslahti, E. Cytoplasmic displacement of cyclin E-cdk2 inhibitors p21Cip1 and p27Kip1 in anchorage-independent cells. Oncogene 16, 2575–2583 (1998).
    Article CAS PubMed Google Scholar
  34. Soucek, T., Yeung, R.S. & Hengstschläger, M. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc. Natl. Acad. Sci. 95, 15653–15658 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  35. Uren, A. et al. Carboxy-terminal domain of p27Kip1 activates Cdc2. J. Biol. Chem. 272, 21699–21672 (1997).
    Article Google Scholar
  36. Alessandrini, A., Chiaur, D.S. & Pagano, M. Regulation of the cyclin-dependent kinase inhibitor p27 by degradation and phosphorylation. Leukemia 11, 342–345 (1997).
    Article CAS PubMed Google Scholar
  37. Kawada, M. et al. Induction of p27 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene 15, 629–637 (1997).
    Article CAS PubMed Google Scholar
  38. Boehm, M. et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J. 21, 3390–3401. (2002).
    Article CAS PubMed PubMed Central Google Scholar
  39. Fujita, E. et al. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem. Biophys. Res. Commun. 264, 550–555. (1999).
    Article CAS PubMed Google Scholar
  40. Franke, T.F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736 (1995).
    Article CAS PubMed Google Scholar
  41. Abbott, D.W. & Holt, J.T. Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J. Biol. Chem. 274, 2732–2742 (1999).
    Article CAS PubMed Google Scholar
  42. Medema, R.H., Klompmaker, R., Smits, V.A.J. & Rijksen, G. p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 16, 431–441 (1998).
    Article CAS PubMed Google Scholar
  43. Van der Geer, P . & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis 15, 544–554 (1994).
    Article CAS PubMed Google Scholar
  44. Albanell, J. et al. Activated extracellular signal–regulated kinases: Association with epidermal growth factor receptor/transforming growth factor α expression in head and neck squamous carcinoma and inhibition by anti–epidermal growth factor receptor treatments. Cancer Res. 61, 6500–6510 (2001).
    CAS PubMed Google Scholar

Download references