PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization (original) (raw)
References
Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Dev.13, 1501–1512 (1999). ArticleCAS Google Scholar
Polyak, K. et al. p27 Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes & Dev.8, 9–22 (1994). ArticleCAS Google Scholar
Philipp-Staheli, J., Payne, S.R. & Kemp, C.J. p27Kip1: Regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res.264, 148–168 (2001). ArticleCASPubMed Google Scholar
Hengst, L. & Reed, S.I. Translational control of p27 Kip1accumulation during the cell cycle. Science271, 1861–1864 (1996). ArticleCASPubMed Google Scholar
Kato, J.Y., Matsuoka, M., Polyak, K., Massague, J. & Sherr, C.J. Cyclic AMP–induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell79, 487–496 (1994). ArticleCASPubMed Google Scholar
Lane, H.A. et al. ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1-Cdk2 complex formation: Receptor overexpression does not determine growth dependency. Mol. Cell. Biol.20, 3210–3223 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yang, H.Y., Zhou, B.P., Hung, M.C. & Lee, M.H. Oncogenic signals of HER-2/neu in regulating the stability of the cyclin-dependent kinase inhibitor p27. J. Biol. Chem.275, 24735–24739 (2000). ArticleCASPubMed Google Scholar
Lenferink, A.E.G., Busse, D., Flanagan, W.M., Yakes, F.M. & Arteaga, C.L. Erb B2/neu kinase modulates cellular p27 Kip1and cyclin D1 through multiple signaling pathways. Cancer Res.61, 6583–6591 (2001). CASPubMed Google Scholar
Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes & Dev.13, 1181–1189 (1999). ArticleCAS Google Scholar
Shirane, M. et al. Down-regulation of p27Kip1by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J. Biol. Chem.274, 13886–13893 (1999). ArticleCASPubMed Google Scholar
Pérez-Roger, I., Solomon, D.L.C., Sewing, A. & Land, H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27Kip1 binding to newly formed complexes. Oncogene14, 2373–2381 (1997). ArticlePubMed Google Scholar
Sheaff, R.J., Groudine, M., Gordon, M., Roberts, J.M. & Clurman, B.E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes & Dev.11, 1464–1478 (1997). ArticleCAS Google Scholar
Carrano, A.C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol.1, 193–199 (1999). ArticleCASPubMed Google Scholar
Sutterlüty, H. et al. p45Skp2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol.1, 207–214 (1999). ArticlePubMed Google Scholar
Vanhaesebroeck, B. & Alessi, D.R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem. J.346, 561–576 (2000). CASPubMedPubMed Central Google Scholar
del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. . Interleukin-3-induced phosphorylation of bad through the protein kinase Akt. Science278, 687–698 (1997). ArticleCASPubMed Google Scholar
Cardone, M.H. et al. Regulation of cell death protease caspase-9 by phosphorylation. Science282, 1318–1321 (1998). ArticleCASPubMed Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell96, 857–868 (1999). ArticleCASPubMed Google Scholar
Medema, R.H., Kops, G.J., Bos, J.L. & Burgering, B.M.T. AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27Kip1. Nature404, 782–787 (2000). ArticleCASPubMed Google Scholar
Romashkova, J.A. & Marakov, S.S. NF-κB is a target of Akt in anti-apoptotic PDGF signaling. Nature401, 86–90 (1999) ArticleCASPubMed Google Scholar
Zhou, B.P., Liao, Y., Xia, W., Zou, Y., Spohn, B. & Hung, M.C. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol.3, 973–982 (2001). ArticleCASPubMed Google Scholar
Brennan, P. et al. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity7, 679–689 (1997). ArticleCASPubMed Google Scholar
Ahmed, N.N., Grimes, H.L., Bellacosa, A., Chan, T.O. & Tsichlis, P.N. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci.94, 3627–3632 (1997). ArticleCASPubMedPubMed Central Google Scholar
Diehl, J.A., Cheng, M., Roussel, M.F. & Sherr, C.J. Glycogen synthase kinase-3b regulates cyclin D1 proteolysis and subcellular localization. Genes & Dev.12, 3499–3511 (1998). ArticleCAS Google Scholar
Zhou, B.P., Liao, Y., Xia, W. Spohn, B., Lee, M.H. & Hung, M.C. Cytoplasmic localization of p21Cip/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nature Cell Biol.3, 245–252 (2001). ArticleCASPubMed Google Scholar
Kotani, K. et al. Dominant negative forms of Akt (protein kinase B) and atypical protein kinase Cλ do not prevent insulin inhibition of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem.274, 21305–21312 (1999). ArticleCASPubMed Google Scholar
Ishida, N., Kitagawa, M., Hatakeyama, S. & Nakayama, K. Phosphorylation at serine 10, a major phosphorylation site of p27Kip1, increases its protein stability. J. Biol. Chem.275, 25146–25154 (2000). ArticleCASPubMed Google Scholar
Baldassarre, D. et al. Overexpressed cyclin D3 contributes to retaining the growth inhibitor p27 in the cytoplasm of thyroid tumor cells. J. Clin. Invest.104, 865–874 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sánchez-Beato, M. et al., Anomalous High p27/KIP1 Expression in a subset of aggressive B-cell lymphomas is associated with cyclin D3 overexpression. p27/KIP1-cyclin D3 colocalization in tumor cells. Blood94, 765–772 (1999). PubMed Google Scholar
Singh, S.P. et al. Loss or altered subcellular localization of p27 in Barrett's associated adenocarcinoma. Cancer Res.58, 1730–1735 (1998). CASPubMed Google Scholar
Ciaparrone, M. et al. Localization and expression of p27Kip1 in multistage colorectal carcinogenesis. Cancer Res.58, 114–122 (1998). CASPubMed Google Scholar
Yaroslavskiy, B., Watkins, S., Donnenberg, A.D., Patton, T.J. & Steinman, R.A. Subcellular and cell-cycle expression profiles of CDK-inhibitors in normal differentiating myeloid cells. Blood93, 2907–2917 (1999). CASPubMed Google Scholar
Orend, G., Hunter, T. & Ruoslahti, E. Cytoplasmic displacement of cyclin E-cdk2 inhibitors p21Cip1 and p27Kip1 in anchorage-independent cells. Oncogene16, 2575–2583 (1998). ArticleCASPubMed Google Scholar
Soucek, T., Yeung, R.S. & Hengstschläger, M. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc. Natl. Acad. Sci.95, 15653–15658 (1998). ArticleCASPubMedPubMed Central Google Scholar
Uren, A. et al. Carboxy-terminal domain of p27Kip1 activates Cdc2. J. Biol. Chem.272, 21699–21672 (1997). Article Google Scholar
Alessandrini, A., Chiaur, D.S. & Pagano, M. Regulation of the cyclin-dependent kinase inhibitor p27 by degradation and phosphorylation. Leukemia11, 342–345 (1997). ArticleCASPubMed Google Scholar
Kawada, M. et al. Induction of p27 degradation and anchorage independence by Ras through the MAP kinase signaling pathway. Oncogene15, 629–637 (1997). ArticleCASPubMed Google Scholar
Boehm, M. et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J.21, 3390–3401. (2002). ArticleCASPubMedPubMed Central Google Scholar
Fujita, E. et al. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9. Biochem. Biophys. Res. Commun.264, 550–555. (1999). ArticleCASPubMed Google Scholar
Franke, T.F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell81, 727–736 (1995). ArticleCASPubMed Google Scholar
Abbott, D.W. & Holt, J.T. Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J. Biol. Chem.274, 2732–2742 (1999). ArticleCASPubMed Google Scholar
Medema, R.H., Klompmaker, R., Smits, V.A.J. & Rijksen, G. p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene16, 431–441 (1998). ArticleCASPubMed Google Scholar
Van der Geer, P . & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by electrophoresis and chromatography on thin-layer cellulose plates. Electrophoresis15, 544–554 (1994). ArticleCASPubMed Google Scholar
Albanell, J. et al. Activated extracellular signal–regulated kinases: Association with epidermal growth factor receptor/transforming growth factor α expression in head and neck squamous carcinoma and inhibition by anti–epidermal growth factor receptor treatments. Cancer Res.61, 6500–6510 (2001). CASPubMed Google Scholar