Multiple sclerosis: Re-expression of a developmental pathway that restricts oligodendrocyte maturation (original) (raw)

References

  1. Prineas, J.W. & McDonald, W.I. Demyelinating diseases. in Greenfield's Neuropathology, 6th edn. (eds. Graham, D.I. & Lantos, P.L.) 813–896 (Arnold, London 1997).
    Google Scholar
  2. Raine, C.S. Demyelinating diseases. in Textbook of Neuropathology 3rd edn. (eds. Davis R.L. and Robertson, D.M.) 243–287 (Williams & Wilkins, Baltimore, 1997).
    Google Scholar
  3. Wolswijk, G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J. Neurosci. 18, 601–609 (1998)
    Article CAS Google Scholar
  4. Chang, A., Tourtellotte, W.W., Rudick, R. & Trapp, B.D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–73 (2002)
    Article Google Scholar
  5. Prineas, J.W., Kwon, E.E., Goldenberg, P.Z., Cho, E.S. & Sharer, L.R. Interaction of astrocytes and newly formed oligodendrocytes in resolving multiple sclerosis lesions. Lab. Invest. 63, 624–636 (1990)
    CAS PubMed Google Scholar
  6. Brosnan, C.F. & Raine, C.S. Mechanisms of immune injury in multiple sclerosis. Brain Pathol. 6, 243–257 (1996).
    Article CAS Google Scholar
  7. Ohtsuka, T. et al. Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207 (1999).
    Article CAS Google Scholar
  8. Wang, S. et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21, 63–75 (1998).
    Article Google Scholar
  9. Kondo, T. & Raff M.C. Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 127, 2989–2998 (2000).
    CAS Google Scholar
  10. Givogri, M.I. et al. Central nervous system myelination in mice with deficient expression of Notch1 receptor. J. Neurosci. Res. 67, 309–320 (2002).
    Article CAS Google Scholar
  11. Raine, C.S. The neuropathology of multiple sclerosis. in Multiple Sclerosis: Clinical and Pathogenetic Basis (eds. Raine, C.S., McFarland, H.F. & Tourtelotte, W.W.) 151–172 (Chapman & Hall, London, UK, 1997).
    Google Scholar
  12. Baranzini, S.E. et al. Transcriptional analysis of multiple sclerosis brain lesions reveals a complex pattern of cytokine expression. J. Immunol. 165, 6576–6582 (2000).
    Article CAS Google Scholar
  13. Cannella, B. & Raine, C.S. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann. Neurol. 37, 424–435 (1995).
    Article CAS Google Scholar
  14. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med. 8, 500–508 (2002).
    Article CAS Google Scholar
  15. McCartney-Francis, N.L., Frazier-Jessen, M. & Wahl, S.M. TGF-β: A balancing act. Int. Rev. Immunol. 16, 553–580 (1998).
    Article CAS Google Scholar
  16. Blobe, G.C., Schiemann, W.P. & Lodish, H.F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).
    Article CAS Google Scholar
  17. Lee, S.C. & Brosnan, C.F. Molecular biology of glia: Astrocytes. in Molecular Biology of Multiple Sclerosis (ed. Russell, W.C.) 71–96 (John Wiley & Sons, New York, 1997).
    Google Scholar
  18. Luster, A.D. & Ravetch, J.V. Biochemical characterization of a γ interferon-inducible cytokine (IP-10). J. Exp. Med. 166, 1084–1097 (1987)
    Article CAS Google Scholar
  19. Gray, G.E. et al. Human ligands of the Notch receptor. Am. J. Pathol. 154, 785–794 (1999).
    Article CAS Google Scholar
  20. Bottinger, E.P. et al. The recombinant proregion of transforming growth factor β1 (latency-associated peptide) inhibits active transforming growth factor β1 in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 5877–5882 (1996).
    Article CAS Google Scholar
  21. McDonald, W.I. & Sears, T.A. Effect of demyelination on conduction in the central nervous system. Nature 221, 182–183 (1969).
    Article CAS Google Scholar
  22. Smith, K.J., Blakemore, W.F. & McDonald, W.I. Central remyelination restores secure conduction. Nature 280, 395–396 (1979).
    Article CAS Google Scholar
  23. Trapp, B.D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).
    Article CAS Google Scholar
  24. Logan, A. et al. Effects of transforming growth factor β1 on scar production in the injured central nervous system of the rat. Eur. J. Neurosci. 6, 355–363 (1994).
    Article CAS Google Scholar
  25. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).
    Article CAS Google Scholar
  26. _estan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. Science 286, 741–746 (1999).
    Article Google Scholar
  27. Redmond, L., Oh, S.-R., Hicks, C., Weinmaster, G. & Ghosh, A. Nuclear Notch1 signaling and the regulation of dendritic development. Nature Neurosci. 3, 30–40 (2000).
    Article CAS Google Scholar
  28. Liu, J.S.H., Zhao, M-L., Brosnan, C.F. & Lee, S.C. Expression of type II nitric oxide synthase in primary human astrocytes and microglia: Role of IL-1β and IL-1 receptor antagonist. J. Immunol. 157, 3569–3576 (1996).
    CAS PubMed Google Scholar
  29. Stears, R.L., Getts, R.C. & Gullens, S.R. A novel, sensitive detection system for high-density microarrays using dendrimer technology. Physiol. Genomics 3, 93–99 (2001).
    Article Google Scholar
  30. Lassmann, H., Raine, C.S., Antel, J. & Prineas, J.W. Immunopathology of multiple sclerosis: Report on an international meeting at the Institute of Neurology at the University of Vienna. J. Neuroimmunol. 86, 213–217 (1998).
    Article CAS Google Scholar
  31. Wu, E. & Raine, C.S. Multiple sclerosis: Interactions between oligodendrocytes and hypertrophic astrocytes and their occurrence in other, non-demyelinating conditions. Lab. Invest. 67, 88–99 (1992).
    CAS PubMed Google Scholar

Download references