The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis (original) (raw)

References

  1. Khanna, C. et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 61, 3750–3759 (2001).
    CAS PubMed Google Scholar
  2. Algrain, M., Turunen, O., Vaheri, A., Louvard, D. & Arpin, M. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J. Cell Biol. 120, 129–139 (1993).
    Article CAS Google Scholar
  3. Bretscher, A., Edwards, K. & Fehon, R.G. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3, 586–599 (2002).
    Article CAS Google Scholar
  4. Nguyen, R., Reczek, D. & Bretscher, A. Hierarchy of merlin and ezrin N and C-terminal domain interactions in homo and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J. Biol. Chem. 276, 7621–7629 (2001).
    Article CAS Google Scholar
  5. Martin, T.A., Harrison, G., Mansel, R.E. & Jiang, W.G. The role of the CD44/ezrin complex in cancer metastasis. Crit. Rev. Oncol. Hematol. 46, 165–186 (2003).
    Article Google Scholar
  6. Ohtani, K. et al. Ezrin, a membrane-cytoskeletal linking protein, is highly expressed in atypical endometrial hyperplasia and uterine endometrioid adenocarcinoma. Cancer Lett. 179, 79–86 (2002).
    Article CAS Google Scholar
  7. Makitie, T., Carpen, O., Vaheri, A. & Kivela, T. Ezrin as a prognostic indicator and its relationship to tumor characteristics in uveal malignant melanoma. Invest. Ophthalmol. Vis. Sci. 42, 2442–2449 (2001).
    CAS PubMed Google Scholar
  8. Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150, 193–203 (2000).
    Article CAS Google Scholar
  9. Chambers, A.F. et al. Critical steps in hematogenous metastasis: an overview. Surg. Oncol. Clin. N. Am. 10, 243–255 (2001).
    Article CAS Google Scholar
  10. Clark, E.A., Golub, T.R., Lander, E.S. & Hynes, R.O. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000).
    Article CAS Google Scholar
  11. Chambers, A.F., Naumov, G.N., Vantyghem, S.A. & Tuck, A.B. Molecular biology of breast cancer metastasis. Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Res. 2, 400–407 (2000).
    Article CAS Google Scholar
  12. Wong, C.W. et al. Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am. J. Pathol. 161, 749–753 (2002).
    Article Google Scholar
  13. Wong, C.W. et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res. 61, 333–338 (2001).
    CAS Google Scholar
  14. Luzzi, K.J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).
    Article CAS Google Scholar
  15. Gautreau, A., Poullet, P., Louvard, D. & Arpin, M. Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3–kinase/Akt pathway. Proc. Natl. Acad. Sci. USA 96, 7300–7305 (1999).
    Article CAS Google Scholar
  16. Ward, Y. et al. Signal pathways which promote invasion and metastasis: critical and distinct contributions of extracellular signal-regulated kinase and Ral-specific guanine exchange factor pathways. Mol. Cell Biol. 21, 5958–5969 (2001).
    Article CAS Google Scholar
  17. Vail, D.M. & MacEwen, E.G. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest. 18, 781–792 (2000).
    Article CAS Google Scholar
  18. Withrow, S.J., Powers, B.E., Straw, R.C. & Wilkins, R.M. Comparative aspects of osteosarcoma. Dog versus man. Clin. Orthop. 270, 159–168 (1991).
    Google Scholar
  19. Khanna, C. et al. A randomized controlled trial of octreotide pamoate long-acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: evaluation of insulin-like growth factor suppression and chemotherapy. Clin. Cancer Res. 8, 2406–2412 (2002).
    CAS PubMed Google Scholar
  20. Crepaldi, T., Gautreau, A., Comoglio, P.M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol. 138, 423–434 (1997).
    Article CAS Google Scholar
  21. Hiscox, S. & Jiang, W.G. Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with E-cadherin/β-catenin. J. Cell Sci. 112, 3081–3090 (1999).
    CAS PubMed Google Scholar
  22. Yu, Y. et al. Expression profiling identifies the cytoskeletal organizer Ezrin and the developmental homeoprotein Six1 as key metastatic regulators. Nat. Med. 10, 48–54 (2004)
    Article Google Scholar
  23. Reddy, K.B., Nabha, S.M. & Atanaskova, N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 4, 395–403 (2003).
    Article Google Scholar
  24. Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49–54 (2003).
    Article CAS Google Scholar
  25. Khanna, C. et al. An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin. Exp. Metastasis 18, 261–271 (2000).26.
    Article CAS Google Scholar
  26. Lamb, R. et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr. Biol. 7, 682–688 (1997).
    Article CAS Google Scholar
  27. Wan, X. & Helman, L.J. Effect of insulin-like growth factor II on protecting myoblast cells against cisplatin-induced apoptosis through p70 S6 kinase pathway. Neoplasia 4, 400–408 (2002).
    Article CAS Google Scholar

Download references