ERM proteins and merlin: integrators at the cell cortex (original) (raw)
Sato, N. et al. A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J. Cell Sci.103, 131–143 (1992). CASPubMed Google Scholar
Bretscher, A. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J. Cell Biol.97, 425–432 (1983).This paper reports on the original identification of ezrin as a component of microvillar cytoskeletons, its purification and localization to cell-surface microvilli of cultured cells. CASPubMed Google Scholar
Pakkanen, R., Hedman, K., Turunen, O., Wahlstrom, T. & Vaheri, A. Microvillus-specific Mr 75,000 plasma membrane protein of human choriocarcinoma cells. J. Histochem. Cytochem.35, 809–816 (1987). CASPubMed Google Scholar
Gould, K. L., Cooper, J. A., Bretscher, A. & Hunter, T. The protein-tyrosine kinase substrate, p81, is homologous to a chicken microvillar core protein. J. Cell Biol.102, 660–669 (1986). CASPubMed Google Scholar
Berryman, M., Franck, Z. & Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci.105, 1025–1043 (1993). CASPubMed Google Scholar
Tsukita, S., Hieda, Y. & Tsukita, S. A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J. Cell Biol.108, 2369–2382 (1989).The first description of radixin. CASPubMed Google Scholar
Amieva, M. R., Wilgenbus, K. K. & Furthmayr, H. Radixin is a component of hepatocyte microvilli in situ. Exp. Cell Res.210, 140–144 (1994). CASPubMed Google Scholar
Lankes, W., Griesmacher, A., Grunwald, J., Schwartz-Albiez, R. & Keller, R. A heparin-binding protein involved in inhibition of smooth-muscle cell proliferation. Biochem. J.251, 831–842 (1988). CASPubMedPubMed Central Google Scholar
Gould, K. L., Bretscher, A., Esch, F. S. & Hunter, T. cDNA cloning and sequencing of the protein-tyrosine kinase substrate, ezrin, reveals homology to band 4.1. EMBO J.8, 4133–4142 (1989). CASPubMedPubMed Central Google Scholar
Lankes, W. T. & Furthmayr, H. Moesin: a member of the protein 4.1–talin–ezrin family of proteins. Proc. Natl Acad. Sci. USA88, 8297–8301 (1991).This study showed that moesin is closely related to ezrin. CASPubMedPubMed Central Google Scholar
Funayama, N., Nagafuchi, A., Sato, N., Tsukita, S. & Tsukita, S. Radixin is a novel member of the band 4.1 family. J. Cell Biol.115, 1039–1048 (1991). CASPubMed Google Scholar
Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell75, 826 (1993). CASPubMed Google Scholar
Rouleau, G. A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature363, 515–521 (1993).Together with reference12, this study showed that the complementary DNA that encodes the product of theNeurofibromatosis 2tumour-suppressor gene is related to the ERM family. CASPubMed Google Scholar
Gusella, J. F., Ramesh, V., MacCollin, M. & Jacoby, L. B. Merlin: the neurofibromatosis 2 tumor suppressor. Biochim. Biophys. Acta1423, M29–M36 (1999). CASPubMed Google Scholar
Bretscher, A., Chamber, C., Nguyen, R. & Reczek, D. ERM-merlin and EBP50 protein families in plasma membrane organization and function. Annu. Rev. Cell Dev. Biol.16, 113–143 (2000). CASPubMed Google Scholar
Mangeat, P., Roy, C. & Martin, M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol.9, 187–192 (1999). CASPubMed Google Scholar
Tsukita, S. & Yonemura, S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem.274, 34507–34510 (1999). CASPubMed Google Scholar
Doi, Y. et al. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J. Biol. Chem.274, 2315–2321 (1999). CASPubMed Google Scholar
Takeuchi, K. et al. Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J. Cell Biol.125, 1371–1384 (1994).Using antisense oligonucleotides to suppress the expression of ERM proteins, this study showed that ERM proteins are necessary for the presence of microvilli on cultured cells. CASPubMed Google Scholar
Allenspach, E. J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity15, 739–750 (2001). CASPubMed Google Scholar
Kaul, S. C. et al. Identification of a 55-kDa ezrin-related protein that induces cytoskeletal changes and localizes to the nucleolus. Exp. Cell Res.250, 51–61 (1999). CASPubMed Google Scholar
Crepaldi, T., Gautreau, A., Comoglio, P. M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol.138, 423–434 (1997). CASPubMedPubMed Central Google Scholar
McClatchey, A. I., Saotome, I., Ramesh, V., Gusella, J. F. & Jacks, T. The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev.11, 1253–1265 (1997).This paper reports the first mouse knockout of theNf2gene, which shows that merlin is essential for early development. CASPubMed Google Scholar
Fehon, R. G., Oren, T., LaJeunesse, D. R., Melby, T. E. & McCartney, B. M. Isolation of mutations in the Drosophila homologues of the human Neurofibromatosis 2 and yeast CDC42 genes using a simple and efficient reverse-genetic method. Genetics146, 245–252 (1997). CASPubMedPubMed Central Google Scholar
Gusella, J. F., Ramesh, V., MacCollin, M. & Jacoby, L. B. Neurofibromatosis 2: loss of merlin's protective spell. Curr. Opin. Genet. Dev.6, 87–92 (1996). CASPubMed Google Scholar
Gary, R. & Bretscher, A. Heterotypic and homotypic associations between ezrin and moesin, two putative membrane-cytoskeletal linking proteins. Proc. Natl Acad. Sci. USA90, 10846–10850 (1993). CASPubMedPubMed Central Google Scholar
Gary, R. & Bretscher, A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell6, 1061–1075 (1995).The intramolecular FERM–C-ERMAD interaction is described and mapped, and the idea that ERM proteins are subject to conformational regulation is proposed. CASPubMedPubMed Central Google Scholar
Berryman, M., Gary, R. & Bretscher, A. Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J. Cell Biol.131, 1231–1242 (1995). CASPubMed Google Scholar
Bretscher, A., Gary, R. & Berryman, M. Soluble ezrin purified from placenta exists as stable monomers and elongated dimers with masked C-terminal ezrin–radixin–moesin association domains. Biochemistry34, 16830–16837 (1995). CASPubMed Google Scholar
Magendantz, M., Henry, M. D., Lander, A. & Solomon, F. Interdomain interactions of radixin in vitro. J. Biol. Chem.270, 25324–25327 (1995). CASPubMed Google Scholar
Martin, M. et al. Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. J. Cell. Biol.128, 1081–1093 (1995). CASPubMed Google Scholar
Henry, M. D., Gonzalez Agosti, C. & Solomon, F. Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains. J. Cell Biol.129, 1007–1022 (1995). CASPubMed Google Scholar
Reczek, D. & Bretscher, A. The carboxyl-terminal region of EBP50 binds to a site in the amino-terminal domain of ezrin that is masked in the dormant molecule. J. Biol. Chem.273, 18452–18458 (1998).This paper used biochemical studies to prove that the binding site of EBP50 on the FERM domain is masked by the FERM–C-ERMAD interaction in dormant ezrin, which validates the conformational-regulation hypothesis. CASPubMed Google Scholar
Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem.272, 23371–23375 (1997). CASPubMed Google Scholar
Ishikawa, H. et al. Structural conversion between open and closed forms of radixin: low-angle shadowing electron microscopy. J. Mol. Biol.310, 973–978 (2001). CASPubMed Google Scholar
Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol.150, 193–203 (2000). CASPubMedPubMed Central Google Scholar
Nakamura, F., Amieva, M. R. & Furthmayr, H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J. Biol. Chem.270, 31377–31385 (1995). CASPubMed Google Scholar
Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol.140, 647–657 (1998).Thein vitrodemonstration that Rho-kinase can phosphorylate a specific threonine in the carboxy-terminal region of ERM proteins, which reduces the FERM–C-ERMAD interaction, but has no effect on the F-actin-binding site. ArticleCASPubMedPubMed Central Google Scholar
Oshiro, N., Fukata, Y. & Kaibuchi, K. Phosphorylation of moesin by Rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J. Biol. Chem.273, 34663–34666 (1998). CASPubMed Google Scholar
Hayashi, K., Yonemura, S., Matsui, T., Tsukita, S. & Tsukita, S. Immunofluorescence detection of ezrin/radixin/moesin (ERM) proteins with their carboxyl-terminal threonine phosphorylated in cultured cells and tissues. J. Cell Sci.112, 1149–1158 (1999). CASPubMed Google Scholar
Tran Quang, C., Gautreau, A., Arpin, M. & Treisman, R. Ezrin function is required for ROCK-mediated fibroblast transformation by the net and dbl oncogenes. EMBO J.19, 4565–4576 (2000). CASPubMedPubMed Central Google Scholar
Ng, T. et al. Ezrin is a downstream effector of trafficking PKC–integrin complexes involved in the control of cell motility. EMBO J.20, 2723–2741 (2001). CASPubMedPubMed Central Google Scholar
Pietromonaco, S. F., Simons, P. C., Altman, A. & Elias, L. Protein kinase C-θ phosphorylation of moesin in the actin-binding sequence. J. Biol. Chem.273, 7594–7603 (1998). CASPubMed Google Scholar
Simons, P. C., Pietromonaco, S. F., Reczek, D., Bretscher, A. & Elias, L. C-terminal threonine phosphorylation activates ERM proteins to link the cell's cortical lipid bilayer to the cytoskeleton. Biochem. Biophys. Res. Commun.253, 561–565 (1998). CASPubMed Google Scholar
Yonemura, S., Matsui, T. & Tsukita, S. Rho-dependent and-independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci.115, 2569–2580 (2002). CASPubMed Google Scholar
Hirao, M. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol.135, 37–51 (1996).This study proposed roles for PtdIns(4,5)P2and Rho-signalling pathways in ERM protein regulation. CASPubMed Google Scholar
Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol.140, 885–895 (1998).Together with reference68, this report provided the first identification of ERM-binding regions in the cytoplasmic tails of membrane proteins. CASPubMedPubMed Central Google Scholar
Nakamura, F., Huang, L., Pestonjamasp, K., Luna, E. J. & Furthmayr, H. Regulation of F-actin binding to platelet moesin in vitro by both phosphorylation of threonine 558 and polyphosphatidylinositides. Mol. Biol. Cell10, 2669–2685 (1999). CASPubMedPubMed Central Google Scholar
Niggli, V., Andreoli, C., Roy, C. & Mangeat, P. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett.376, 172–176 (1995). CASPubMed Google Scholar
Barret, C., Roy, C., Montcourrier, P., Mangeat, P. & Niggli, V. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J. Cell Biol.151, 1067–1080 (2000). CASPubMedPubMed Central Google Scholar
Pearson, M., Reczek, D., Bretscher, A. & Karplus, P. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell101, 259–270 (2000).This study reported the first structure of a FERM domain, as well as the FERM–C-ERMAD complex. CASPubMed Google Scholar
Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J.19, 4449–4462 (2000).This study reported the first structure of the free (and presumably active) FERM domain and, by comparison with the structure of Pearsonet al. (reference51), described the structural changes that are induced after C-ERMAD release. CASPubMedPubMed Central Google Scholar
Edwards, S. D. & Keep, N. H. The 2.7 Å crystal structure of the activated FERM domain of moesin: an analysis of structural changes on activation. Biochemistry40, 7061–7068 (2001). CASPubMed Google Scholar
Zhou, Y. J. et al. Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol. Cell8, 959–969 (2001). CASPubMed Google Scholar
Gu, M. & Majerus, P. W. The properties of the protein tyrosine phosphatase PTPMEG. J. Biol. Chem.271, 27751–27759 (1996). CASPubMed Google Scholar
Johnson, R. P. & Craig, S. W. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature373, 261–264 (1995). CASPubMed Google Scholar
Johnson, R. P. & Craig, S. W. Actin activates a cryptic dimerization potential of the vinculin tail domain. J. Biol. Chem.275, 95–105 (2000). CASPubMed Google Scholar
Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell97, 221–231 (1999). CASPubMed Google Scholar
Alberts, A. S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem.276, 2824–2830 (2001). CASPubMed Google Scholar
Bretscher, A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J. Cell Biol.108, 921–930 (1989). CASPubMed Google Scholar
Turunen, O., Wahlstrom, T. & Vaheri, A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J. Cell Biol.126, 1445–1453 (1994).This study identified the F-actin-binding site in the tail of ezrin. CASPubMed Google Scholar
Pestonjamasp, K. et al. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes. Mol. Biol. Cell6, 247–259 (1995). CASPubMedPubMed Central Google Scholar
Berryman, M. & Bretscher, A. Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Mol. Biol. Cell11, 1509–1521 (2000). CASPubMedPubMed Central Google Scholar
Roy, C., Martin, M. & Mangeat, P. A dual involvement of the amino-terminal domain of ezrin in F- and G-actin binding. J. Biol. Chem.272, 20088–20095 (1997). CASPubMed Google Scholar
Martin, M., Roy, C., Montcourrier, P., Sahuquet, A. & Mangeat, P. Three determinants in ezrin are responsible for cell extension activity. Mol. Biol. Cell8, 1543–1557 (1997). CASPubMedPubMed Central Google Scholar
Marchesi, V. T. Stabilizing infrastructure of cell membranes. Annu. Rev. Cell Biol.1, 531–561 (1985). CASPubMed Google Scholar
Tsukita, S. et al. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell. Biol.126, 391–401 (1994). CASPubMed Google Scholar
Legg, J. W. & Isacke, C. M. Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol.8, 705–708 (1998). CASPubMed Google Scholar
Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. & Isacke, C. M. A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature Cell Biol.4, 399–407 (2002). CASPubMed Google Scholar
Heiska, L. et al. Association of ezrin with intercellular adhesion molecule-1 and-2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem.273, 21893–21900 (1998). CASPubMed Google Scholar
Helander, T. S. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature382, 265–268 (1996).The first evidence for a biological function of ezrin. CASPubMed Google Scholar
Delon, J., Kaibuchi, K. & Germain, R. N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity15, 691–701 (2001). CASPubMed Google Scholar
Roumier, A. et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity15, 715–728 (2001). CASPubMed Google Scholar
Denker, S. P., Huang, D. C., Orlowski, J., Furthmayr, H. & Barber, D. L. Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol. Cell6, 1425–1436 (2000). CASPubMed Google Scholar
Yun, C. H., Lamprecht, G., Forster, D. V. & Sidor, A. NHE3 kinase A regulatory protein E3KARP binds the epithelial brush border Na+/H+ exchanger NHE3 and the cytoskeletal protein ezrin. J. Biol. Chem.273, 25856–25863 (1998). CASPubMed Google Scholar
Reczek, D. & Bretscher, A. Identification of EPI64, a TBC/RabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP. J. Cell Biol.153, 191–206 (2001). CASPubMedPubMed Central Google Scholar
Weinman, E. J., Minkoff, C. & Shenolikar, S. Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. Am. J. Physiol. Renal Physiol.279, F393–F399 (2000). CASPubMed Google Scholar
Weinman, E. J. & Shenolikar, S. The Na–H exchanger regulatory factor. Exp. Nephrol.5, 449–452 (1997). CASPubMed Google Scholar
Weinman, E. J., Steplock, D., Wade, J. B. & Shenolikar, S. Ezrin binding domain-deficient NHERF attenuates cAMP-mediated inhibition of Na+/H+ exchange in OK cells. Am. J. Physiol. Renal Physiol.281, F374–F380 (2001). CASPubMed Google Scholar
Dransfield, D. T. et al. Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J.16, 35–43 (1997). CASPubMedPubMed Central Google Scholar
Wang, S., Raab, R. W., Schatz, P. J., Guggino, W. B. & Li, M. Peptide binding consensus of the NHE-RF–PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS Lett.427, 103–108 (1998). CASPubMed Google Scholar
Short, D. B. et al. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem.273, 19797–19801 (1998). CASPubMed Google Scholar
Hall, R. A. et al. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl Acad. Sci. USA95, 8496–8501 (1998). CASPubMedPubMed Central Google Scholar
Hall, R. A. et al. The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature392, 626–630 (1998). CASPubMed Google Scholar
Cao, T. T., Deacon, H. W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor. Nature401, 286–290 (1999). CASPubMed Google Scholar
Yun, C. H. et al. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc. Natl Acad. Sci. USA94, 3010–3015 (1997). CASPubMedPubMed Central Google Scholar
Maudsley, S. et al. Platelet-derived growth factor receptor association with Na+/H+ exchanger regulatory factor potentiates receptor activity. Mol. Cell. Biol.20, 8352–8363 (2000). CASPubMedPubMed Central Google Scholar
Takeda, T., McQuistan, T., Orlando, R. A. & Farquhar, M. G. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J. Clin. Invest.108, 289–301 (2001). CASPubMedPubMed Central Google Scholar
Matsui, T., Yonemura, S., Tsukita, S. & Tsukita, S. Activation of ERM proteins in vivo by rho involves phosphatidylinositol 4-phosphate 5-kinase and not ROCK kinases. Curr. Biol.9, 1259–1262 (1999). CASPubMed Google Scholar
Fukata, Y. et al. Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-associated kinase and myosin phosphatase. J. Cell Biol.141, 409–418 (1998). CASPubMedPubMed Central Google Scholar
Shaw, R. J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell9, 403–419 (1998). CASPubMedPubMed Central Google Scholar
Kotani, H., Takaishi, K., Sasaki, T. & Takai, Y. Rho regulates association of both the ERM family and vinculin with the plasma membrane in MDCK cells. Oncogene14, 1705–1713 (1997). CASPubMed Google Scholar
Mackay, D. J., Esch, F., Furthmayr, H. & Hall, A. Rho- and Rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol.138, 927–938 (1997). CASPubMedPubMed Central Google Scholar
Lamb, R. F. et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nature Cell Biol.2, 281–287 (2000). CASPubMed Google Scholar
Shimizu, T. et al. Structural basis for Neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J. Biol. Chem.277, 10332–10336 (2002). CASPubMed Google Scholar
Kang, B. S., Cooper, D. R., Devedjiev, Y., Derewenda, U. & Derewenda, Z. S. The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product. Acta Crystallogr. D Biol. Crystallogr.58, 381–391 (2002). PubMed Google Scholar
McCartney, B. M. & Fehon, R. G. Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of moesin and the neurofibromatosis 2 tumor suppressor, merlin. J. Cell Biol.133, 843–852 (1996). CASPubMed Google Scholar
Xu, H. M. & Gutmann, D. H. Merlin differentially associates with the microtubule and actin cytoskeleton. J. Neurosci. Res.51, 403–415 (1998). CASPubMed Google Scholar
James, M. F., Manchanda, N., Gonzalez-Agosti, C., Hartwig, J. H. & Ramesh, V. The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem. J.356, 377–386 (2001). CASPubMedPubMed Central Google Scholar
Brault, E. et al. Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain. J. Cell Sci.114, 1901–1912 (2001). CASPubMed Google Scholar
Scherer, S. S., Xu, T., Crino, P., Arroyo, E. J. & Gutmann, D. H. Ezrin, radixin, and moesin are components of Schwann cell microvilli. J. Neurosci. Res.65, 150–164 (2001). CASPubMed Google Scholar
LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. Structural analysis of Drosophila merlin reveals functional domains important for growth control and subcellular localization. J. Cell Biol.141, 1589–1599 (1998).This study showed that merlin regulates cell proliferation inDrosophila, and the FERM domain provides all the essential functions ofDrosophilamerlin. CASPubMedPubMed Central Google Scholar
Stokowski, R. P. & Cox, D. R. Functional analysis of the neurofibromatosis type 2 protein by means of disease-causing point mutations. Am. J. Hum. Genet.66, 873–891 (2000). CASPubMedPubMed Central Google Scholar
Meng, J. J. et al. Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggests modulation of ERM proteins by merlin. J. Neurosci. Res.62, 491–502 (2000). CASPubMed Google Scholar
Gronholm, M. et al. Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. J. Cell Sci.112, 895–904 (1999). CASPubMed Google Scholar
Gonzalez-Agosti, C., Wiederhold, T., Herndon, M. E., Gusella, J. & Ramesh, V. Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J. Biol. Chem.274, 34438–34442 (1999). CASPubMed Google Scholar
Sherman, L. et al. Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene15, 2505–2509 (1997). CASPubMed Google Scholar
Nguyen, R., Reczek, D. & Bretscher, A. Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J. Biol. Chem.276, 7621–7629 (2001). CASPubMed Google Scholar
Gutmann, D. H. et al. The NF2 interactor, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), associates with merlin in the 'open' conformation and suppresses cell growth and motility. Hum. Mol. Genet.10, 825–834 (2001). CASPubMed Google Scholar
Maeda, M., Matsui, T., Imamura, M., Tsukita, S. & Tsukita, S. Expression level, subcellular distribution and Rho-GDI binding affinity of merlin in comparison with ezrin/radixin/moesin proteins. Oncogene18, 4788–4797 (1999). CASPubMed Google Scholar
Scoles, D. R. et al. Neurofibromatosis 2 tumour suppressor schwannomin interacts with βII-spectrin. Nature Genet.18, 354–359 (1998). CASPubMed Google Scholar
Xiao, G. H., Beeser, A., Chernoff, J. & Testa, J. R. p21-activated kinase links Rac/Cdc42 signaling to Merlin. J. Biol. Chem.21, 21 (2001). CAS Google Scholar
Kissil, J. L., Johnson, K. C., Eckman, M. S. & Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J. Biol. Chem.277, 10394–10399 (2002). CASPubMed Google Scholar
Shaw, R. J., McClatchey, A. I. & Jacks, T. Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J. Biol. Chem.273, 7757–7764 (1998). CASPubMed Google Scholar
Shaw, R. J. et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell1, 63–72 (2001).This study showed that merlin functions downstream of Rac in a signalling pathway. CASPubMed Google Scholar
Morrison, H. et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev.15, 968–980 (2001).Merlin is reported to confer its tumour-suppressing function through interaction with the cytoplasmic tail of CD44 in response to elevated levels of hyaluronate, the ligand for CD44. CASPubMedPubMed Central Google Scholar
LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. A systematic screen for dominant second-site modifiers of Merlin/NF2 phenotypes reveals an interaction with blistered/DSRF and scribbler. Genetics158, 667–679 (2001). CASPubMedPubMed Central Google Scholar
Chishti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci.23, 281–282 (1998). CASPubMed Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.22, 4673–4680 (1994). CASPubMedPubMed Central Google Scholar
Girault, J. A., Labesse, G., Mornon, J. P. & Callebaut, I. Janus kinases and focal adhesion kinases play in the 4.1 band: a superfamily of band 4.1 domains important for cell structure and signal transduction. Mol. Med.4, 751–769 (1998). CASPubMedPubMed Central Google Scholar
Edwards, K., Davis, T., Marcey, D., Kurihara, J. & Yamamoto, D. Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez from two Drosophila species: implications for structure and function. Gene275, 195–205 (2001). CASPubMed Google Scholar
Andersen, J. N. et al. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol.21, 7117–7136 (2001). CASPubMedPubMed Central Google Scholar
McClatchey, A. I. et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev.12, 1121–1133 (1998). CASPubMedPubMed Central Google Scholar
Giovannini, M. et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev.13, 978–986 (1999). CASPubMedPubMed Central Google Scholar
Kalamarides, M. et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev.16, 1060–1065 (2002). CASPubMedPubMed Central Google Scholar
McCartney, B. M., Kulikauskas, R. M., LaJeunesse, D. R. & Fehon, R. G. The neurofibromatosis-2 homologue, merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development127, 1315–1324 (2000). CASPubMed Google Scholar
Serrador, J. M. et al. CD43 interacts with moesin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell–cell contacts. Blood91, 4632–4644 (1998). CASPubMed Google Scholar
Serrador, J. M. et al. Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. J. Cell Biol.138, 1409–1423 (1997). CASPubMedPubMed Central Google Scholar
Ivetic, A., Deka, J., Ridley, A. & Ager, A. The cytoplasmic tail of L-selectin interacts with members of the ezrin–radixin–moesin (ERM) family of proteins: activation dependent binding of moesin but not ezrin. J. Biol. Chem.8, 8 (2001). Google Scholar
Reczek, D., Berryman, M. & Bretscher, A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin–radixin–moesin family. J. Cell Biol.139, 169–179 (1997).The description of the first PDZ-containing apical scaffolding protein that binds the ERM family. CASPubMedPubMed Central Google Scholar
Bonilha, V. L. & Rodriguez-Boulan, E. Polarity and developmental regulation of two PDZ proteins in the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci.42, 3274–3282 (2001). CASPubMed Google Scholar
Granes, F., Urena, J. M., Rocamora, N. & Vilaro, S. Ezrin links syndecan-2 to the cytoskeleton. J. Cell Sci.113, 1267–1276 (2000). CASPubMed Google Scholar
Takahashi, K. et al. Interaction of radixin with Rho small G protein GDP/GTP exchange protein Dbl. Oncogene16, 3279–3284 (1998). PubMed Google Scholar
Poullet, P. et al. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J. Biol. Chem.276, 37686–37691 (2001). CASPubMed Google Scholar
Gautreau, A., Poullet, P., Louvard, D. & Arpin, M. Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc. Natl Acad. Sci. USA96, 7300–7305 (1999). CASPubMedPubMed Central Google Scholar
Parlato, S. et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J.19, 5123–5134 (2000). CASPubMedPubMed Central Google Scholar
Mykkanen, O. M. et al. Characterization of human palladin, a microfilament-associated protein. Mol. Biol. Cell12, 3060–3073 (2001). CASPubMedPubMed Central Google Scholar