Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency (original) (raw)

References

  1. Mirmalek-Sani, S. H. et al. Characterization and multipotentiality of human fetal femur-derived cells: Implications for skeletal tissue regeneration. Stem Cells 24, 1042–1053 (2006).
    Article Google Scholar
  2. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).
    Article CAS Google Scholar
  3. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).
    Article CAS Google Scholar
  4. Curran, J. M., Chen, R. & Hunt, J. A. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27, 4783–4793 (2006).
    Article CAS Google Scholar
  5. Benoit, D. S. W., Schwartz, M. P., Durney, A. R. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).
    Article CAS Google Scholar
  6. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
    Article CAS Google Scholar
  7. Dalby, M. J. et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nature Mater. 6, 997–1003 (2007).
    Article CAS Google Scholar
  8. Oh, S. et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl Acad. Sci. USA 106, 2130–2135 (2009).
    Article CAS Google Scholar
  9. Yanes, O. et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nature Chem. Biol. 6, 411–417 (2010).
    Article CAS Google Scholar
  10. Reyes, J. M. et al. Metabolic changes in mesenchymal stem cells in osteogenic medium measured by autofluorescence spectroscopy. Stem Cells 24, 1213–1217 (2006).
    Article CAS Google Scholar
  11. Kuroda, Y. et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc. Natl Acad. Sci. USA 107, 8639–8643 (2010).
    Article CAS Google Scholar
  12. Pacini, S. et al. Constitutive expression of pluripotency-associated genes in mesodermal progenitor cells (MPCs). PLoS ONE 5, e9861 (2010).
    Article Google Scholar
  13. Kiss-Laszlo, Z., Henry, Y. & Kiss, T. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 17, 797–807 (1998).
    Article CAS Google Scholar
  14. Kishore, S. & Stamm, S. Regulation of alternative splicing by snoRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 329–334 (2006).
    Article CAS Google Scholar
  15. Ender, C. et al. A human snoRNA with microRNA-like functions. Mol. Cell 32, 519–528 (2008).
    Article CAS Google Scholar
  16. Mattick, J. S. & Makunin, I. V. Small regulatory RNAs in mammals. Human Mol. Genet. 14, R121–R132 (2005).
    Article CAS Google Scholar
  17. Gangaraju, V. K. & Lin, H. MicroRNAs: key regulators of stem cells. Nature Rev. Mol. Cell Biol. 10, 116–125 (2009).
    Article CAS Google Scholar
  18. Stadler, B. M. & Ruohola-Baker, H. Small RNAs: Keeping stem cells in line. Cell 132, 563–566 (2008).
    Article CAS Google Scholar
  19. Cassano, M. et al. Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis. PLoS ONE 3, e3223 (2008).
    Article Google Scholar
  20. Kang, Y. J. et al. Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J. Cell Biochem. 95, 1135–1145 (2005).
    Article CAS Google Scholar
  21. Bocelli-Tyndall, C. et al. Fibroblast growth factor 2 and platelet-derived growth factor, but not platelet lysate, induce proliferation-dependent, functional class II major histocompatibility complex antigen in human mesenchymal stem cells. Arthritis Rheum. 62, 3815–3825 (2010).
    Article CAS Google Scholar
  22. Sabri, A., Ziaee, A. A., Ostad, S. N., Alimoghadam, K. & Ghahremani, M. H. Crosstalk of EGF-directed MAPK signalling pathways and its potential role on EGF-induced cell proliferation and COX-2 expression in human mesenchymal stem cells. Cell Biochem. Funct. 29, 64–70 (2011).
    Article CAS Google Scholar
  23. Kapinas, K., Kessler, C., Ricks, T., Gronowicz, G. & Delany, A. M. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J. Biol. Chem. 285, 25221–25231 (2010).
    Article CAS Google Scholar
  24. Yang, Z. et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through EID-1. Stem Cells Dev. 259–267 (2010).
  25. Xiao, G., Jiang, D., Gopalakrishnan, R. & Franceschi, R. T. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J. Biol. Chem. 277, 36181–36187 (2002).
    Article CAS Google Scholar
  26. Ge, C., Xiao, G., Jiang, D. & Franceschi, R. T. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 176, 709–718 (2007).
    Article CAS Google Scholar
  27. Liao, Q. C. et al. Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal-regulated kinases 1/2 activity. J. Cell Biochem. 104, 1853–1864 (2008).
    Article CAS Google Scholar
  28. Nakano, N. et al. Gliclazide inhibits proliferation but stimulates differentiation of white and brown adipocytes. J. Biochem. 142, 639–645 (2007).
    Article CAS Google Scholar
  29. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nature Rev. Mol. Cell Biol. 10, 75–82 (2009).
    Article CAS Google Scholar
  30. Guilak, F. et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009).
    Article CAS Google Scholar
  31. Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).
    Article CAS Google Scholar
  32. Kwan, A. P., Cummings, C. E., Chapman, J. A. & Grant, M. E. Macromolecular organization of chicken type X collagen in vitro. J. Cell Biol. 114, 597–604 (1991).
    Article CAS Google Scholar
  33. Stephens, M., Kwan, A. P., Bayliss, M. T. & Archer, C. W. Human articular surface chondrocytes initiate alkaline phosphatase and type X collagen synthesis in suspension culture. J. Cell Sci. 103 (Pt 4), 1111–1116 (1992).
    Google Scholar
  34. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).
    Article CAS Google Scholar
  35. Gadegaard, N., Mosler, M. & Larsen, M. B. Biomimetic polymer nanostructures by injection molding. Macromol. Mater. Eng. 288, 76–83 (2003).
    Article CAS Google Scholar

Download references