- Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).
CAS Google Scholar
- Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006).
CAS PubMed Google Scholar
- Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292, H1209–H1224 (2007).
CAS PubMed Google Scholar
- Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005).
CAS PubMed Google Scholar
- Hayakawa, K., Tatsumi, H. & Sokabe, M. Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci. 121, 496–503 (2008).
CAS PubMed Google Scholar
- Matthews, B. D., Overby, D. R., Mannix, R. & Ingber, D. E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119, 508–518 (2006).
CAS PubMed Google Scholar
- Meyer, C. J. et al. Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nature Cell Biol. 2, 666–668 (2000).
CAS PubMed Google Scholar
- Lele, T. P. et al. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J. Cell Physiol. 207, 187–194 (2006).
CAS PubMed Google Scholar
- Chicurel, M. E., Singer, R. H., Meyer, C. J. & Ingber, D. E. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392, 730–733 (1998).
CAS PubMed Google Scholar
- Giannone, G. & Sheetz, M. P. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 16, 213–223 (2006).
CAS PubMed Google Scholar
- Dong, C., Skalak, R. & Sung, K. L. Cytoplasmic rheology of passive neutrophils. Biorheology 28, 557–567 (1991).
CAS PubMed Google Scholar
- Fung, Y. C. & Liu, S. Q. Elementary mechanics of the endothelium of blood vessels. J. Biomech. Eng. 115, 1–12 (1993).
CAS PubMed Google Scholar
- Heidemann, S. R., Kaech, S., Buxbaum, R. E. & Matus, A. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145, 109–122 (1999).
CAS PubMed Central PubMed Google Scholar
- Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003).
CAS PubMed Google Scholar
- Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).
CAS PubMed Central PubMed Google Scholar
- Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173, 733–741 (2006).
CAS PubMed Central PubMed Google Scholar
- Vikstrom, K. L., Lim, S. S., Goldman, R. D. & Borisy, G. G. Steady state dynamics of intermediate filament networks. J. Cell Biol. 118, 121–129 (1992).
CAS PubMed Google Scholar
- Wang, N. & Suo, Z. Long-distance propagation of forces in a cell. Biochem. Biophys. Res. Commun. 328, 1133–1138 (2005).
CAS PubMed Google Scholar
- Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).
CAS PubMed Google Scholar
- Chowdhury, F. et al. Is cell rheology governed by nonequilibrium to equilibrium transition of noncovalent bonds? Biophys. J. 3 Oct 2008 (doi: 10.1529/biophysj.108.139832).
CAS PubMed Central PubMed Google Scholar
- Fey, E. G., Wan, K. M. & Penman, S. Epithelial cytoskeletal framework and nuclear matrix–intermediate filament scaffold: three-dimensional organization and protein composition. J. Cell Biol. 98, 1973–1984 (1984).
CAS PubMed Google Scholar
- Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).
CAS PubMed PubMed Central Google Scholar
- Ingber, D. E. The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell 75, 1249–1252 (1993).
CAS PubMed Google Scholar
- Wang, N. et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. USA 98, 7765–7770 (2001).
CAS PubMed PubMed Central Google Scholar
- Knight, M. M. et al. Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields. Biomech. Model. Mechanobiol. 5, 180–191 (2006).
CAS PubMed Google Scholar
- Silberberg, Y. R. et al. Mitochondrial displacements in response to nanomechanical forces. J. Mol. Recognit. 21, 30–36 (2008).
CAS PubMed Google Scholar
- Helmke, B. P., Rosen, A. B. & Davies, P. F. Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J. 84, 2691–2699 (2003).
CAS PubMed Central PubMed Google Scholar
- Sims, J. R., Karp, S. & Ingber, D. E. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J. Cell Sci. 103, 1215–1222 (1992).
PubMed Google Scholar
- Hu, S., Chen, J., Butler, J. P. & Wang, N. Prestress mediates force propagation into the nucleus. Biochem. Biophys. Res. Commun. 329, 423–428 (2005).
CAS PubMed Google Scholar
- Hu, S. et al. Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am. J. Physiol., Cell Physiol. 285, C1082–C1090 (2003).
CAS Google Scholar
- Hu, S. et al. Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am. J. Physiol., Cell Physiol. 287, C1184–C1191 (2004).
CAS Google Scholar
- Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl Acad. Sci. USA 105, 6626–6631 (2008).
CAS PubMed PubMed Central Google Scholar
- Maniotis, A. J., Bojanowski, K. & Ingber, D. E. Mechanical continuity and reversible chromosome disassembly within intact genomes removed from living cells. J. Cell. Biochem. 65, 114–130 (1997).
CAS PubMed Google Scholar
- Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nature Cell Biol. 9, 858–867 (2007).
CAS PubMed Google Scholar
- Homan, S. M., Martinez, R., Benware, A. & LaFlamme, S. E. Regulation of the association of α6β4 with vimentin intermediate filaments in endothelial cells. Exp. Cell Res. 281, 107–114 (2002).
CAS PubMed Google Scholar
- Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005).
CAS Google Scholar
- Georgatos, S. D. & Blobel, G. Lamin B constitutes an intermediate filament attachment site at the nuclear envelope. J. Cell Biol. 105, 117–125 (1987).
CAS PubMed Google Scholar
- Georgatos, S. D. & Blobel, G. Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: a basis for a vectorial assembly of intermediate filaments. J. Cell Biol. 105, 105–115 (1987).
CAS PubMed Google Scholar
- Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Haque, F. et al. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell Biol. 26, 3738–3751 (2006).
CAS PubMed Central PubMed Google Scholar
- Padmakumar, V. C. et al. The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J. Cell Sci. 118, 3419–3430 (2005).
CAS PubMed Google Scholar
- Worman, H. J. & Gundersen, G. G. Here come the SUNs: a nucleocytoskeletal missing link. Trends Cell Biol. 16, 67–69 (2006).
CAS PubMed Google Scholar
- Hodzic, D. M., Yeater, D. B., Bengtsson, L., Otto, H. & Stahl, P. D. Sun2 is a novel mammalian inner nuclear membrane protein. J. Biol. Chem. 279, 25805–25812 (2004).
CAS PubMed Google Scholar
- Zhang, X. et al. Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134, 901–908 (2007).
CAS PubMed Google Scholar
- Hansen, L. K. & Ingber, D. E. in Nuclear Trafficking (ed. Feldherr, C. M.) 71–86 (Academic Press, San Diego, 1992).
Google Scholar
- Liu, Q. et al. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178, 785–798 (2007).
CAS PubMed Central PubMed Google Scholar
- Ketema, M. et al. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J. Cell Sci. 120, 3384–3394 (2007).
CAS PubMed Google Scholar
- Wilhelmsen, K. et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171, 799–810 (2005).
CAS PubMed Central PubMed Google Scholar
- Starr, D. A. Communication between the cytoskeleton and the nuclear envelope to position the nucleus. Mol. Biosyst. 3, 583–589 (2007).
CAS PubMed Central PubMed Google Scholar
- Malone, C. J. et al. The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115, 825–836 (2003).
CAS PubMed Google Scholar
- McGee, M. D., Rillo, R., Anderson, A. S. & Starr, D. A. UNC-83 is a KASH protein required for nuclear migration and is recruited to the outer nuclear membrane by a physical interaction with the SUN protein UNC-84. Mol. Biol. Cell 17, 1790–1801 (2006).
CAS PubMed Central PubMed Google Scholar
- Starr, D. A. et al. unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development 128, 5039–5050 (2001).
CAS PubMed Google Scholar
- Dechat, T. et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853 (2008).
CAS PubMed Central PubMed Google Scholar
- Lammerding, J. et al. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006).
CAS PubMed Google Scholar
- Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).
CAS PubMed Central PubMed Google Scholar
- Lee, K. K. et al. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci. 114, 4567–4573 (2001).
CAS PubMed Google Scholar
- Sakaki, M. et al. Interaction between emerin and nuclear lamins. J. Biochem. 129, 321–327 (2001).
CAS PubMed Google Scholar
- Worman, H. J., Yuan, J., Blobel, G. & Georgatos, S. D. A lamin B receptor in the nuclear envelope. Proc. Natl Acad. Sci. USA 85, 8531–8534 (1988).
CAS PubMed PubMed Central Google Scholar
- Mislow, J. M. et al. Nesprin-1α self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett. 525, 135–140 (2002).
CAS PubMed Google Scholar
- Wheeler, M. A. et al. Distinct functional domains in nesprin-1α and nesprin-2β bind directly to emerin and both interactions are disrupted in X-linked Emery–Dreifuss muscular dystrophy. Exp. Cell Res. 313, 2845–2857 (2007).
CAS PubMed Google Scholar
- Holaska, J. M. & Wilson, K. L. An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46, 8897–8908 (2007).
CAS PubMed Google Scholar
- Salpingidou, G., Smertenko, A., Hausmanowa-Petrucewicz, I., Hussey, P. J. & Hutchison, C. J. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J. Cell Biol. 178, 897–904 (2007).
CAS PubMed Central PubMed Google Scholar
- Wilkinson, F. L. et al. Emerin interacts in vitro with the splicing-associated factor, YT521-B. Eur. J. Biochem. 270, 2459–2466 (2003).
CAS PubMed Google Scholar
- Holmer, L. & Worman, H. J. Inner nuclear membrane proteins: functions and targeting. Cell. Mol. Life Sci. 58, 1741–1747 (2001).
CAS PubMed Google Scholar
- Stewart-Hutchinson, P. J., Hale, C. M., Wirtz, D. & Hodzic, D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314, 1892–1905 (2008).
CAS PubMed Central PubMed Google Scholar
- Bloom, S., Lockard, V. G. & Bloom, M. Intermediate filament-mediated stretch-induced changes in chromatin: a hypothesis for growth initiation in cardiac myocytes. J. Mol. Cell. Cardiol. 28, 2123–2127 (1996).
CAS PubMed Google Scholar
- Pekny, M. & Lane, E. B. Intermediate filaments and stress. Exp. Cell Res. 313, 2244–2254 (2007).
CAS PubMed Google Scholar
- Mattout, A., Dechat, T., Adam, S. A., Goldman, R. D. & Gruenbaum, Y. Nuclear lamins, diseases and aging. Curr. Opin. Cell Biol. 18, 335–341 (2006).
CAS PubMed Google Scholar
- Barboro, P. et al. Unraveling the organization of the internal nuclear matrix: RNA-dependent anchoring of NuMA to a lamin scaffold. Exp. Cell Res. 279, 202–218 (2002).
CAS PubMed Google Scholar
- Hozak, P., Sasseville, A. M., Raymond, Y. & Cook, P. R. Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci. 108, 635–644 (1995).
CAS PubMed Google Scholar
- Malyavantham, K. S. et al. Identifying functional neighborhoods within the cell nucleus: proximity analysis of early S-phase replicating chromatin domains to sites of transcription, RNA polymerase II, HP1γ, matrin 3 and SAF-A. J. Cell. Biochem. 105, 391–403 (2008).
CAS PubMed Central PubMed Google Scholar
- Zastrow, M. S., Flaherty, D. B., Benian, G. M. & Wilson, K. L. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J. Cell Sci. 119, 239–249 (2006).
CAS PubMed Google Scholar
- Granzier, H. L. & Labeit, S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ. Res. 94, 284–295 (2004).
CAS PubMed Google Scholar
- Pederson, T. As functional nuclear actin comes into view, is it globular, filamentous, or both? J. Cell Biol. 180, 1061–1064 (2008).
CAS PubMed Central PubMed Google Scholar
- Vreugde, S. et al. Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol. Cell 23, 749–755 (2006).
CAS PubMed Google Scholar
- Ye, J., Zhao, J., Hoffmann-Rohrer, U. & Grummt, I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 22, 322–330 (2008).
CAS PubMed Central PubMed Google Scholar
- Holaska, J. M., Kowalski, A. K. & Wilson, K. L. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol. 2, e231 (2004).
PubMed Central PubMed Google Scholar
- Lattanzi, G. et al. Association of emerin with nuclear and cytoplasmic actin is regulated in differentiating myoblasts. Biochem. Biophys. Res. Commun. 303, 764–770 (2003).
CAS PubMed Google Scholar
- Bode, J., Goetze, S., Heng, H., Krawetz, S. A. & Benham, C. From DNA structure to gene expression: mediators of nuclear compartmentalization and dynamics. Chromosome Res. 11, 435–445 (2003).
CAS PubMed Google Scholar
- Chakalova, L., Debrand, E., Mitchell, J. A., Osborne, C. S. & Fraser, P. Replication and transcription: shaping the landscape of the genome. Nature Rev. Genet. 6, 669–677 (2005).
CAS PubMed Google Scholar
- Cook, P. R. Predicting three-dimensional genome structure from transcriptional activity. Nature Genet. 32, 347–352 (2002).
CAS PubMed Google Scholar
- Nickerson, J. A., Blencowe, B. J. & Penman, S. The architectural organization of nuclear metabolism. Int. Rev. Cytol. 162A, 167–123 (1995).
Google Scholar
- Durst, K. L. & Hiebert, S. W. Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23, 4220–4224 (2004).
CAS PubMed Google Scholar
- Stein, G. S. et al. Organization of transcriptional regulatory machinery in nuclear microenvironments: implications for biological control and cancer. Adv. Enzyme Regul. 47, 242–250 (2007).
CAS PubMed Central PubMed Google Scholar
- Zaidi, S. K. et al. The dynamic organization of gene-regulatory machinery in nuclear microenvironments. EMBO Rep. 6, 128–133 (2005).
CAS PubMed Central PubMed Google Scholar
- Stamenovic, D. & Ingber, D. E. Tensegrity-guided self assembly: from molecules to living cells. Soft Matter (in the press).
- Itano, N., Okamoto, S., Zhang, D., Lipton, S. A. & Ruoslahti, E. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc. Natl Acad. Sci. USA 100, 5181–5186 (2003).
CAS PubMed PubMed Central Google Scholar
- Prat, A. G. & Cantiello, H. F. Nuclear ion channel activity is regulated by actin filaments. Am. J. Physiol. 270, C1532–C1543 (1996).
CAS PubMed Google Scholar
- Haraguchi, T. et al. Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery–Dreifuss muscular dystrophy. Eur. J. Biochem. 271, 1035–1045 (2004).
CAS PubMed Google Scholar
- Dreuillet, C., Tillit, J., Kress, M. & Ernoult-Lange, M. In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res. 30, 4634–4642 (2002).
CAS PubMed Central PubMed Google Scholar
- Bentley, D. L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).
CAS PubMed Google Scholar
- Blencowe, B. J., Nickerson, J. A., Issner, R., Penman, S. & Sharp, P. A. Association of nuclear matrix antigens with exon-containing splicing complexes. J. Cell Biol. 127, 593–607 (1994).
CAS PubMed Google Scholar
- Lange, S. et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 1599–1603 (2005).
CAS PubMed Google Scholar
- Feldherr, C. M. & Akin, D. The permeability of the nuclear envelope in dividing and nondividing cell cultures. J. Cell Biol. 111, 1–8 (1990).
CAS PubMed Google Scholar
- Kohler, A., Schneider, M., Cabal, G. G., Nehrbass, U. & Hurt, E. Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nature Cell Biol. 10, 707–715 (2008).
PubMed Google Scholar
- Yen, A. & Pardee, A. B. Role of nuclear size in cell growth initiation. Science 204, 1315–1317 (1979).
CAS PubMed Google Scholar
- Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nature Struct. Mol. Biol. 15, 146–154 (2008).
CAS Google Scholar
- Liu, J. et al. The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO J. 25, 2119–2130 (2006).
CAS PubMed Central PubMed Google Scholar
- Luo, Y., Xu, X., Lele, T., Kumar, S. & Ingber, D. E. A multi-modular tensegrity model of an actin stress fiber. J. Biomech. 41, 2379–2387 (2008).
PubMed Central PubMed Google Scholar
- Janmey, P. A., Euteneuer, U., Traub, P. & Schliwa, M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol. 113, 155–160 (1991).
CAS PubMed Google Scholar
- Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).
CAS PubMed PubMed Central Google Scholar
- de Lanerolle, P., Johnson, T. & Hofmann, W. A. Actin and myosin I in the nucleus: what next? Nature Struct. Mol. Biol. 12, 742–746 (2005).
CAS Google Scholar
- Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nature Rev. Mol. Cell Biol. 23 Dec 2008 (doi: 10.1038/nrm2596).
CAS PubMed Central PubMed Google Scholar
- Chalfie, M. Neurosensory mechanotransduction. Nature Rev. Mol. Cell Biol. 23 Dec 2008 (doi: 10.1038/nrm2595).
CAS PubMed Google Scholar
- Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 23 Dec 2008 (doi: 10.1038/nrm2597).
CAS PubMed Central PubMed Google Scholar
- Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing by cells through focal adhesions. Nature Rev. Mol. Cell Biol. 23 Dec 2008 (doi: 10.1038/nrm2593)
CAS PubMed Google Scholar