Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation (original) (raw)
References
Wollert, K. C. & Drexler, H. Cell therapy for the treatment of coronary heart disease: A critical appraisal. Nature Rev. Cardiol.7, 204–215 (2010). Article Google Scholar
Silva, E. A., Kim, E. S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA105, 14347–14352 (2008). ArticleCAS Google Scholar
Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature462, 426–432 (2009). ArticleCAS Google Scholar
Lutolf, M. P., Gilbert, P. M. & Blau, H. M. Designing materials to direct stem-cell fate. Nature462, 433–441 (2009). ArticleCAS Google Scholar
Engler, A. J., Sen, S., Sweeny, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). ArticleCAS Google Scholar
Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater.9, 518–526 (2010). ArticleCAS Google Scholar
Peyton, S. R. et al. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol. Bioeng.108, 1181–1193 (2011). ArticleCAS Google Scholar
Scadden, D. T. The stem-cell niche as an entity of action. Nature441, 1075–1079 (2009). Article Google Scholar
Yang, F. et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials26, 5991–5998 (2005). ArticleCAS Google Scholar
Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature457, 1103–1108 (2009). ArticleCAS Google Scholar
Khetan, S. & Burdick, J. A. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials31, 8228–8234 (2010). ArticleCAS Google Scholar
Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials21, 2529–2543 (2000). ArticleCAS Google Scholar
Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J. & Mooney, D. J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone35, 562–569 (2004). ArticleCAS Google Scholar
Ouyang, H. W., Goh, J. C. H., Thambyah, A., Teoh, S. H. & Lee, E. H. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng.9, 431–439 (2003). ArticleCAS Google Scholar
Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA107, 15211–15216 (2010). ArticleCAS Google Scholar
Stachowiak, A. N., Bershteyn, A., Tzatzalos, E. & Irvine, D. J. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater.17, 399–403 (2005). ArticleCAS Google Scholar
Golden, A. P. & Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip7, 720–725 (2007). ArticleCAS Google Scholar
Wang, H. et al. Biocompatibility and osteogeneesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials28, 3338–3348 (2007). ArticleCAS Google Scholar
Lutolf, M. P. et al. Repair of bone defects using synthetic mimetics of collageneous extracellular matrices. Nature Biotechnol.21, 513–518 (2003). ArticleCAS Google Scholar
Liu Tsang, V. et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J.21, 790–801 (2007). Article Google Scholar
Prajapati, R. T., Chavally-Mis, B., Herbage, D., Eastwood, M. & Brown, R. A. Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen.8, 226–237 (2000). ArticleCAS Google Scholar
Bouhadir, K. H. et al. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog.17, 945–950 (2001). ArticleCAS Google Scholar
Gibson, L. J. & Ashby, M. F. Cellular Solids (Cambridge Univ. Press, 1997). Book Google Scholar
Diduch, D. R., Coe, M. R., Joyner, C., Owen, M. E. & Balian, G. Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization. J. Bone Joint Surg. Am.75, 92–105 (1993). ArticleCAS Google Scholar
Hsiong, S. X., Boontheekul, T., Huebsch, N. & Mooney, D. J. Cyclic RGD peptides enhance 3D stem cell osteogenic differentiation. Tissue Eng. A15, 263–272 (2009). ArticleCAS Google Scholar
Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials20, 45–53 (1999). ArticleCAS Google Scholar
Benoit, D. S., Schwartz, M. P., Durney, A. P. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater.7, 816–823 (2008). ArticleCAS Google Scholar
Khatiwala, C. B., Kim, P. D., Peyton, S. R. & Putnam, A. J. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res.24, 886–898 (2009). ArticleCAS Google Scholar
DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M. & Lauffenburger, D. A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol.122, 729–737 (1993). ArticleCAS Google Scholar
Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA99, 12025–12030 (2002). ArticleCAS Google Scholar
Frenette, P. S., Pinho, S., Lucas, D. & Scheirerman, C. S. Mesenchymal stem cell: Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol.31, 285–316 (2013). Article Google Scholar
Trappmann, B. et al. Extracelluar-matrix tethering regulates stem-cell fate. Nature Mater.11, 642–649 (2012). ArticleCAS Google Scholar
Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science329, 1078–1081 (2010). ArticleCAS Google Scholar
Kong, H. J., Polte, T. R., Alsberg, E. & Mooney, D. J. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad. Sci. USA102, 4300–4305 (2005). ArticleCAS Google Scholar
Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater.12, 458–465 (2013). ArticleCAS Google Scholar
Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nature Mater.13, 645–652 (2014). ArticleCAS Google Scholar
Mammoto, T. et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell21, 758–769 (2011). ArticleCAS Google Scholar
Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J.95, 4426–4438 (2008). ArticleCAS Google Scholar
Sen, S., Engler, A. & J, Discher, D. E. Matrix strains induced by cells: Computing how far cells can feel. Cell Mol. Bioeng.2, 39–48 (2009). Article Google Scholar
Wang, Y. K. et al. Bone morphogenic protein-2 induced signaling and osteogenesis is Regulated by cell shape, RhoA/ROCK, and cytoskeletal tension. Stem Cells Dev.21, 1176–1186 (2012). ArticleCAS Google Scholar
Axelrad, T. W. & Einhorn, T. A. Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev.20, 481–4882 (2009). ArticleCAS Google Scholar
Platt, M. O., Wilder, C. L., Wells, A., Griffith, L. G. & Lauffenburger, D. A. Multipathway kinase signatures of multipotent stromal cells are predictive for osteogenic differentiation: Tissue-specific stem cells. Stem Cells27, 2804–2814 (2009). ArticleCAS Google Scholar
Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell132, 661–680 (2008). ArticleCAS Google Scholar
Groen, R. W. Y. et al. Reconstructing the human hematopoietic niche in immunodeficient mice: Opportunities for studying primary multiple myeloma. Blood120, e9–e16 (2012). ArticleCAS Google Scholar
Kong, H. J., Chan, J. H., Huebsch, N., Weitz, D. & Mooney, D. J. Noninvasive probing of the spatial organization of polymer chains in hydrogels using fluorescence resonance energy transfer (FRET). J. Am. Chem. Soc.129, 4518–4519 (2007). ArticleCAS Google Scholar
Kong, H. J., Smith, M. K. & Mooney, D. J. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials24, 4023–4029 (2003). ArticleCAS Google Scholar
Mehta, M., Checa, S., Lienau, J., Hutmacher, D. & Duda, G. N. In vivo tracking of segmental bone defect healing reveals that callus patterning is related to early mechanical stimuli. Eur. J. Cell. Mater.24, 358–371 (2012). Article Google Scholar