Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation (original) (raw)

References

  1. Wollert, K. C. & Drexler, H. Cell therapy for the treatment of coronary heart disease: A critical appraisal. Nature Rev. Cardiol. 7, 204–215 (2010).
    Article Google Scholar
  2. Silva, E. A., Kim, E. S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA 105, 14347–14352 (2008).
    Article CAS Google Scholar
  3. Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).
    Article CAS Google Scholar
  4. Lutolf, M. P., Gilbert, P. M. & Blau, H. M. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009).
    Article CAS Google Scholar
  5. Engler, A. J., Sen, S., Sweeny, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).
    Article CAS Google Scholar
  6. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Mater. 9, 518–526 (2010).
    Article CAS Google Scholar
  7. Peyton, S. R. et al. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness. Biotechnol. Bioeng. 108, 1181–1193 (2011).
    Article CAS Google Scholar
  8. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2009).
    Article Google Scholar
  9. Yang, F. et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26, 5991–5998 (2005).
    Article CAS Google Scholar
  10. Mammoto, A. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009).
    Article CAS Google Scholar
  11. Khetan, S. & Burdick, J. A. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31, 8228–8234 (2010).
    Article CAS Google Scholar
  12. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000).
    Article CAS Google Scholar
  13. Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J. & Mooney, D. J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35, 562–569 (2004).
    Article CAS Google Scholar
  14. Ouyang, H. W., Goh, J. C. H., Thambyah, A., Teoh, S. H. & Lee, E. H. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng. 9, 431–439 (2003).
    Article CAS Google Scholar
  15. Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).
    Article CAS Google Scholar
  16. Stachowiak, A. N., Bershteyn, A., Tzatzalos, E. & Irvine, D. J. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Adv. Mater. 17, 399–403 (2005).
    Article CAS Google Scholar
  17. Golden, A. P. & Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7, 720–725 (2007).
    Article CAS Google Scholar
  18. Wang, H. et al. Biocompatibility and osteogeneesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28, 3338–3348 (2007).
    Article CAS Google Scholar
  19. Lutolf, M. P. et al. Repair of bone defects using synthetic mimetics of collageneous extracellular matrices. Nature Biotechnol. 21, 513–518 (2003).
    Article CAS Google Scholar
  20. Liu Tsang, V. et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21, 790–801 (2007).
    Article Google Scholar
  21. Prajapati, R. T., Chavally-Mis, B., Herbage, D., Eastwood, M. & Brown, R. A. Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen. 8, 226–237 (2000).
    Article CAS Google Scholar
  22. Bouhadir, K. H. et al. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17, 945–950 (2001).
    Article CAS Google Scholar
  23. Gibson, L. J. & Ashby, M. F. Cellular Solids (Cambridge Univ. Press, 1997).
    Book Google Scholar
  24. Diduch, D. R., Coe, M. R., Joyner, C., Owen, M. E. & Balian, G. Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization. J. Bone Joint Surg. Am. 75, 92–105 (1993).
    Article CAS Google Scholar
  25. Hsiong, S. X., Boontheekul, T., Huebsch, N. & Mooney, D. J. Cyclic RGD peptides enhance 3D stem cell osteogenic differentiation. Tissue Eng. A 15, 263–272 (2009).
    Article CAS Google Scholar
  26. Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).
    Article CAS Google Scholar
  27. Benoit, D. S., Schwartz, M. P., Durney, A. P. & Anseth, K. S. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Mater. 7, 816–823 (2008).
    Article CAS Google Scholar
  28. Khatiwala, C. B., Kim, P. D., Peyton, S. R. & Putnam, A. J. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24, 886–898 (2009).
    Article CAS Google Scholar
  29. DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M. & Lauffenburger, D. A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729–737 (1993).
    Article CAS Google Scholar
  30. Alsberg, E., Anderson, K. W., Albeiruti, A., Rowley, J. A. & Mooney, D. J. Engineering growing tissues. Proc. Natl Acad. Sci. USA 99, 12025–12030 (2002).
    Article CAS Google Scholar
  31. Frenette, P. S., Pinho, S., Lucas, D. & Scheirerman, C. S. Mesenchymal stem cell: Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31, 285–316 (2013).
    Article Google Scholar
  32. Trappmann, B. et al. Extracelluar-matrix tethering regulates stem-cell fate. Nature Mater. 11, 642–649 (2012).
    Article CAS Google Scholar
  33. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).
    Article CAS Google Scholar
  34. Kong, H. J., Polte, T. R., Alsberg, E. & Mooney, D. J. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad. Sci. USA 102, 4300–4305 (2005).
    Article CAS Google Scholar
  35. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Mater. 12, 458–465 (2013).
    Article CAS Google Scholar
  36. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nature Mater. 13, 645–652 (2014).
    Article CAS Google Scholar
  37. Mammoto, T. et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell 21, 758–769 (2011).
    Article CAS Google Scholar
  38. Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008).
    Article CAS Google Scholar
  39. Sen, S., Engler, A. & J, Discher, D. E. Matrix strains induced by cells: Computing how far cells can feel. Cell Mol. Bioeng. 2, 39–48 (2009).
    Article Google Scholar
  40. Wang, Y. K. et al. Bone morphogenic protein-2 induced signaling and osteogenesis is Regulated by cell shape, RhoA/ROCK, and cytoskeletal tension. Stem Cells Dev. 21, 1176–1186 (2012).
    Article CAS Google Scholar
  41. Axelrad, T. W. & Einhorn, T. A. Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev. 20, 481–4882 (2009).
    Article CAS Google Scholar
  42. Platt, M. O., Wilder, C. L., Wells, A., Griffith, L. G. & Lauffenburger, D. A. Multipathway kinase signatures of multipotent stromal cells are predictive for osteogenic differentiation: Tissue-specific stem cells. Stem Cells 27, 2804–2814 (2009).
    Article CAS Google Scholar
  43. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell 132, 661–680 (2008).
    Article CAS Google Scholar
  44. Groen, R. W. Y. et al. Reconstructing the human hematopoietic niche in immunodeficient mice: Opportunities for studying primary multiple myeloma. Blood 120, e9–e16 (2012).
    Article CAS Google Scholar
  45. Kong, H. J., Chan, J. H., Huebsch, N., Weitz, D. & Mooney, D. J. Noninvasive probing of the spatial organization of polymer chains in hydrogels using fluorescence resonance energy transfer (FRET). J. Am. Chem. Soc. 129, 4518–4519 (2007).
    Article CAS Google Scholar
  46. Kong, H. J., Smith, M. K. & Mooney, D. J. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24, 4023–4029 (2003).
    Article CAS Google Scholar
  47. Mehta, M., Checa, S., Lienau, J., Hutmacher, D. & Duda, G. N. In vivo tracking of segmental bone defect healing reveals that callus patterning is related to early mechanical stimuli. Eur. J. Cell. Mater. 24, 358–371 (2012).
    Article Google Scholar

Download references