Supramolecular biomaterials (original) (raw)

References

  1. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).
    Article CAS Google Scholar
  2. Peppas, N. A. & Langer, R. New challenges in biomaterials. Science 263, 1715–1720 (1994).
    CAS Google Scholar
  3. Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).
    Article CAS Google Scholar
  4. Webber, M. J., Khan, O. F., Sydlik, S. A., Tang, B. C. & Langer, R. A perspective on the clinical translation of scaffolds for tissue engineering. Annu. Biomed. Eng. 43, 641–656 (2015).
    Google Scholar
  5. Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).
    CAS Google Scholar
  6. Dong, R. et al. Functional supramolecular polymers for biomedical applications. Adv. Mater. 27, 498–526 (2015).
    CAS Google Scholar
  7. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).
    Article CAS Google Scholar
  8. de Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).
    CAS Google Scholar
  9. Lehn J.-M. Supramolecular chemistry — scope and perspectives. Molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Intl Ed. 27, 89–112 (1988).
    Google Scholar
  10. Appel, E. A., del Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev. 41, 6195–6214 (2012).
    CAS Google Scholar
  11. Seiffert, S. & Sprakel, J. Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 41, 909–930 (2012).
    CAS Google Scholar
  12. Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997).
    CAS Google Scholar
  13. Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Mater. 10, 14–27 (2011).
    CAS Google Scholar
  14. Matson, J. B. & Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun. 48, 26–33 (2012).
    CAS Google Scholar
  15. Webber, M. J., Kessler, J. A. & Stupp, S. I. Emerging peptide nanomedicine to regenerate tissues and organs. J. Intern. Med. 267, 71–88 (2010).
    CAS Google Scholar
  16. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).
    CAS Google Scholar
  17. Collier, J. H. et al. Thermally and photochemically triggered self-assembly of peptide hydrogels. J. Am. Chem. Soc. 123, 9463–9464 (2001).
    CAS Google Scholar
  18. Aggeli, A. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386, 259–262 (1997).
    CAS Google Scholar
  19. Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl Acad. Sci. USA 98, 11857–11862 (2001).
    CAS Google Scholar
  20. Hauser, C. A. et al. Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures. Proc. Natl Acad. Sci. USA 108, 1361–1366 (2011).
    CAS Google Scholar
  21. Zhang, S. et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16, 1385–1393 (1995).
    Google Scholar
  22. Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA 104, 7791–7796 (2007).
    CAS Google Scholar
  23. Schneider, J. P. et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030–15037 (2002).
    CAS Google Scholar
  24. Berndt, P., Fields, G. B. & Tirrell, M. Synthetic lipidation of peptides and amino-acids — monolayer structure and properties. J. Am. Chem. Soc. 117, 9515–9522 (1995).
    CAS Google Scholar
  25. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc. Natl Acad. Sci. USA 99, 5133–5138 (2002).
    CAS Google Scholar
  26. Webber, M. J., Berns, E. J. & Stupp, S. I. Supramolecular nanofibers of peptide amphiphiles for medicine. Isr. J. Chem. 53, 530–554 (2013).
    CAS Google Scholar
  27. Yang, Z. M. et al. Enzymatic formation of supramolecular hydrogels. Adv. Mater. 16, 1440–1444 (2004).
    CAS Google Scholar
  28. Jayawarna, V. et al. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv. Mater. 18, 611–614 (2006).
    CAS Google Scholar
  29. Chen, L. et al. Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation. Langmuir 26, 5232–5242 (2010).
    CAS Google Scholar
  30. Fleming, S. & Ulijn, R. V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 43, 8150–8177 (2014).
    CAS Google Scholar
  31. Cui, H., Webber, M. J. & Stupp, S. I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers 94, 1–18 (2010).
    CAS Google Scholar
  32. Kotch, F. W. & Raines, R. T. Self-assembly of synthetic collagen triple helices. Proc. Natl Acad. Sci. USA 103, 3028–3033 (2006).
    CAS Google Scholar
  33. Gauba, V. & Hartgerink, J. D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc. 129, 2683–2690 (2007).
    CAS Google Scholar
  34. Li, Y. & Yu, S. M. Targeting and mimicking collagens via triple helical peptide assembly. Curr. Opin. Chem. Biol. 17, 968–975 (2013).
    CAS Google Scholar
  35. Banwell, E. F. et al. Rational design and application of responsive alpha-helical peptide hydrogels. Nature Mater. 8, 596–600 (2009).
    CAS Google Scholar
  36. Jing, P., Rudra, J. S., Herr, A. B. & Collier, J. H. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 9, 2438–2446 (2008).
    CAS Google Scholar
  37. Gradisar, H. et al. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nature Chem. Biol. 9, 362–366 (2013).
    CAS Google Scholar
  38. Fletcher, J. M. et al. Self-assembling cages from coiled-coil peptide modules. Science 340, 595–599 (2013).
    CAS Google Scholar
  39. Ryadnov, M. G. & Woolfson, D. N. Engineering the morphology of a self-assembling protein fibre. Nature Mater. 2, 329–332 (2003).
    CAS Google Scholar
  40. Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).
    CAS Google Scholar
  41. Shen, W., Zhang, K., Kornfield, J. A. & Tirrell, D. A. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nature Mater. 5, 153–158 (2006).
    CAS Google Scholar
  42. Lu, H. D., Charati, M. B., Kim, I. L. & Burdick, J. A. Injectable shear-thinning hydrogels engineered with a self-assembling dock-and-lock mechanism. Biomaterials 33, 2145–2153 (2012).
    CAS Google Scholar
  43. Wong Po Foo, C. T. S., Lee, J. S., Mulyasasmita, W., Parisi-Amon, A. & Heilshorn, S. C. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl Acad. Sci. USA 106, 22067–22072 (2009).
    Google Scholar
  44. Davis, M. E. & Brewster, M. E. Cyclodextrin-based pharmaceutics: Past, present and future. Nature Rev. Drug Discov. 3, 1023–1035 (2004).
    CAS Google Scholar
  45. Rodell, C. B., Kaminski, A. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125–4134 (2013).
    CAS Google Scholar
  46. Kakuta, T. et al. Preorganized hydrogel: Self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25, 2849–2853 (2013).
    CAS Google Scholar
  47. Park, K. M. et al. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6, 2960–2968 (2012).
    CAS Google Scholar
  48. Davis, M. E. Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv. Drug Deliver. Rev. 61, 1189–1192 (2009).
    CAS Google Scholar
  49. Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A. & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nature Chem. 3, 34–37 (2010).
    Google Scholar
  50. Yamaguchi, H. et al. Photoswitchable gel assembly based on molecular recognition. Nature Commun. 3, 603 (2012).
    Google Scholar
  51. Boekhoven, J., Perez, C. M. R., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Intl Ed. 52, 12077–12080 (2013).
    CAS Google Scholar
  52. Bartlett, D. W., Su, H., Hildebrandt, I. J., Weber, W. A. & Davis, M. E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA 104, 15549–15554 (2007).
    CAS Google Scholar
  53. Jung, H. et al. 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules 15, 707–714 (2014).
    CAS Google Scholar
  54. Yeom, J. et al. Supramolecular hydrogels for long-term bioengineered stem cell therapy. Adv. Health. Mater. 4, 237–244 (2015).
    CAS Google Scholar
  55. Appel, E. A. et al. Supramolecular cross-linked networks via host–guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 132, 14251–14260 (2010).
    CAS Google Scholar
  56. Appel, E. A., Forster, R. A., Koutsioubas, A., Toprakcioglu, C. & Scherman, O. A. Activation energies control macroscopic properties of physically crosslinked materials. Angew. Chem. Intl Ed. 53, 10038–10043 (2014).
    CAS Google Scholar
  57. Appel, E. A. et al. High-water-content hydrogels from renewable resources through host–guest interactions. J. Am. Chem. Soc. 134, 11767–11773 (2012).
    CAS Google Scholar
  58. Dankers, P. Y. W., Harmsen, M. C., Brouwer, L. A., Van Luyn, M. J. A. & Meijer, E. W. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nature Mater. 4, 568–574 (2005).
    CAS Google Scholar
  59. Dankers, P. Y. W. et al. Hierarchical formation of supramolecular transient networks in water: A modular injectable delivery system. Adv. Mater. 24, 2703–2709 (2012).
    CAS Google Scholar
  60. Wisse, E. et al. Multicomponent supramolecular thermoplastic elastomer with peptide-modified nanofibers. J. Polym. Sci. Pol. Chem. 49, 1764–1771 (2011).
    CAS Google Scholar
  61. Fukushima, K. et al. Supramolecular high-aspect ratio assemblies with strong antifungal activity. Nature Commun. 4, 2861 (2013).
    Google Scholar
  62. Fukushima, K. et al. Broad-spectrum antimicrobial supramolecular assemblies with distinctive size and shape. ACS Nano 6, 9191–9199 (2012).
    CAS Google Scholar
  63. Kim, S. H. et al. A supramolecularly assisted transformation of block-copolymer micelles into nanotubes. Angew. Chem. Intl Ed. 48, 4508–4512 (2009).
    CAS Google Scholar
  64. Leenders, C. M. A. et al. From supramolecular polymers to hydrogel materials. Mater. Horiz. 1, 116–120 (2014).
    CAS Google Scholar
  65. Roosma, J., Mes, T., Leclere, P., Palmans, A. R. A. & Meijer, E. W. Supramolecular materials from benzene-1,3,5-tricarboxamide-based nanorods. J. Am. Chem. Soc. 130, 1120–1121 (2008).
    CAS Google Scholar
  66. Buerkle, L. E., von Recum, H. A. & Rowan, S. J. Toward potential supramolecular tissue engineering scaffolds based on guanosine derivatives. Chem. Sci. 3, 564–572 (2012).
    CAS Google Scholar
  67. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).
    Google Scholar
  68. Stephanopoulos, N. et al. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett. 15, 603–609 (2015).
    CAS Google Scholar
  69. Fullenkamp, D. E., He, L., Barrett, D. G., Burghardt, W. R. & Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 46, 1167–1174 (2013).
    CAS Google Scholar
  70. Holten-Andersen, N. et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl Acad. Sci. USA 108, 2651–2655 (2011).
    CAS Google Scholar
  71. Mozhdehi, D., Ayala, S., Cromwell, O. R. & Guan, Z. Self-healing multiphase polymers via dynamic metal–ligand interactions. J. Am. Chem. Soc. 136, 16128–16131 (2014).
    CAS Google Scholar
  72. Beck, J. B. & Rowan, S. J. Multistimuli, multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc. 125, 13922–13923 (2003).
    CAS Google Scholar
  73. Burnworth, M. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).
    CAS Google Scholar
  74. Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharm. 6, 659–668 (2009).
    CAS Google Scholar
  75. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).
    CAS Google Scholar
  76. An, Q. et al. A Supramolecular system for the electrochemically controlled release of cells. Angew. Chem. Intl Ed. 51, 12233–12237 (2012).
    CAS Google Scholar
  77. Hudalla, G. A. et al. Gradated assembly of multiple proteins into supramolecular nanomaterials. Nature Mater. 13, 829–836 (2014).
    CAS Google Scholar
  78. Capito, R. M., Azevedo, H. S., Velichko, Y. S., Mata, A. & Stupp, S. I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science 319, 1812–1816 (2008).
    CAS Google Scholar
  79. Guo, M. Y., Cao, X. Y., Meijer, E. W. & Dankers, P. Y. W. Core–shell capsules based on supramolecular hydrogels show shell-related erosion and release due to confinement. Macromol. Biosci. 13, 77–83 (2013).
    CAS Google Scholar
  80. Mollet, B. B. et al. A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. J. Mater. Chem. B 2, 2483–2493 (2014).
    CAS Google Scholar
  81. Zhang, J. et al. One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 335, 690–694 (2012).
    CAS Google Scholar
  82. Sur, S., Matson, J. B., Webber, M. J., Newcomb, C. J. & Stupp, S. I. Photodynamic control of bioactivity in a nanofiber matrix. ACS Nano 6, 10776–10785 (2012).
    CAS Google Scholar
  83. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).
    Google Scholar
  84. Yount, W., Loveless, D. & Craig, S. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 127, 14488–14496 (2005).
    CAS Google Scholar
  85. Yount, W., Loveless, D. & Craig, S. Strong means slow: Dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Intl Ed. 44, 2746–2748 (2005).
    CAS Google Scholar
  86. Bastings, M. M. C. et al. A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv. Health. Mater 3, 70–78 (2014).
    CAS Google Scholar
  87. Pashuck, E. T., Cui, H. & Stupp, S. I. Tuning supramolecular rigidity of peptide fibers through molecular structure. J. Am. Chem. Soc. 132, 6041–6046 (2010).
    CAS Google Scholar
  88. Mulyasasmita, W., Lee, J. S. & Heilshorn, S. C. Molecular-level engineering of protein physical hydrogels for predictive sol-gel phase behavior. Biomacromolecules 12, 3406–3411 (2011).
    CAS Google Scholar
  89. Appel, E. A., Forster, R. A., Rowland, M. J. & Scherman, O. A. The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Biomaterials 35, 9897–9903 (2014).
    CAS Google Scholar
  90. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Pt A 18, 806–815 (2012).
    CAS Google Scholar
  91. Newcomb, C. J. et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nature Commun. 5, 3321 (2014).
    Google Scholar
  92. Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nature Mater. 9, 594–601 (2010).
    CAS Google Scholar
  93. Cui, H. et al. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science 327, 555–559 (2010).
    CAS Google Scholar
  94. Lu, H. D., Soranno, D. E., Rodell, C. B., Kim, I. L. & Burdick, J. A. Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels. Adv. Health. Mater. 2, 1028–1036 (2013).
    CAS Google Scholar
  95. Hsu, L., Cvetanovich, G. L. & Stupp, S. I. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core. J. Am. Chem. Soc. 130, 3892–3899 (2008).
    CAS Google Scholar
  96. Webber, M. J., Newcomb, C. J., Bitton, R. & Stupp, S. I. Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter 7, 9665–9672 (2011).
    CAS Google Scholar
  97. Yang, Z., Liang, G., Wang, L. & Xu, B. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J. Am. Chem. Soc. 128, 3038–3043 (2006).
    CAS Google Scholar
  98. Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotechnol. 4, 19–24 (2009).
    CAS Google Scholar
  99. Jun, H. W., Yuwono, V., Paramonov, S. E. & Hartgerink, J. D. Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv. Mater. 17, 2612–2617 (2005).
    CAS Google Scholar
  100. Toledano, S., Williams, R. J., Jayawarna, V. & Ulijn, R. V. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc. 128, 1070–1071 (2006).
    CAS Google Scholar
  101. Lin, Y. A., Ou, Y. C., Cheetham, A. G. & Cui, H. Rational design of MMP degradable peptide-based supramolecular filaments. Biomacromolecules 15, 1419–1427 (2014).
    CAS Google Scholar
  102. Pappas, C. G., Sasselli, I. R. & Ulijn, R. V. Biocatalytic pathway selection in transient tripeptide nanostructures. Angew. Chem. Intl Ed. 54, 8119–8123 (2015).
    CAS Google Scholar
  103. Pires, R. A. et al. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc. 137, 576–579 (2015).
    CAS Google Scholar
  104. Frederix, P. W. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nature Chem. 7, 30–37 (2015).
    CAS Google Scholar
  105. Morris, K. L. et al. Chemically programmed self-sorting of gelator networks. Nature Commun. 4, 1480 (2014).
    Google Scholar
  106. Albertazzi, L. et al. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proc. Natl Acad. Sci. USA 110, 12203–12208 (2013).
    CAS Google Scholar
  107. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).
    CAS Google Scholar
  108. Storrie, H. et al. Supramolecular crafting of cell adhesion. Biomaterials 28, 4608–4618 (2007).
    CAS Google Scholar
  109. Webber, M. J. et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc. Natl Acad. Sci. USA 108, 13438–13443 (2011).
    CAS Google Scholar
  110. Liu, J. C., Heilshorn, S. C. & Tirrell, D. A. Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules 5, 497–504 (2004).
    CAS Google Scholar
  111. Heilshorn, S. C., DiZio, K. A., Welsh, E. R. & Tirrell, D. A. Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials 24, 4245–4252 (2003).
    CAS Google Scholar
  112. Panitch, A., Yamaoka, T., Fournier, M. J., Mason, T. L. & Tirrell, D. A. Design and biosynthesis of elastin-like artificial extracellular matrix proteins containing periodically spaced fibronectin CS5 domains. Macromolecules 32, 1701–1703 (1999).
    CAS Google Scholar
  113. Webber, M. J., Matson, J. B., Tamboli, V. K. & Stupp, S. I. Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials 33, 6823–6832 (2012).
    CAS Google Scholar
  114. Zhang, P., Cheetham, A. G., Lin, Y. A. & Cui, H. Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano 7, 5965–5977 (2013).
    CAS Google Scholar
  115. Appel, E. A., Loh, X. J., Jones, S. T., Dreiss, C. A. & Scherman, O. A. Sustained release of proteins from high water content supramolecular hydrogels. Biomaterials 33, 4646–4652 (2012).
    CAS Google Scholar
  116. Cheetham, A. G., Ou, Y. C., Zhang, P. & Cui, H. Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles. Chem. Commun. 50, 6039–6042 (2014).
    CAS Google Scholar
  117. Mulyasasmita, W., Cai, L., Hori, Y. & Heilshorn, S. C. Avidity-controlled delivery of angiogenic peptides from injectable molecular-recognition hydrogels. Tissue Eng. Pt A 20, 2102–2114 (2014).
    CAS Google Scholar
  118. Rajangam, K. et al. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett. 6, 2086–2090 (2006).
    CAS Google Scholar
  119. Lee, S. S. et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Health. Mater. 4, 131–141 (2015).
    CAS Google Scholar
  120. Wang, L., Li, L. L., Fan, Y. S. & Wang, H. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater. 25, 3888–3898 (2013).
    CAS Google Scholar
  121. Altunbas, A., Lee, S. J., Rajasekaran, S. A., Schneider, J. P. & Pochan, D. J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32, 5906–5914 (2011).
    CAS Google Scholar
  122. Soukasene, S. et al. Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano 5, 9113–9121 (2011).
    CAS Google Scholar
  123. Standley, S. M. et al. Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res. 70, 3020–3026 (2010).
    CAS Google Scholar
  124. Toft, D. J. et al. Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer. ACS Nano 6, 7956–7965 (2012).
    CAS Google Scholar
  125. Zhou, J. & Xu, B. Enzyme-instructed self-assembly: A multistep process for potential cancer therapy. Bioconjug. Chem. 26, 987–999 (2015).
    CAS Google Scholar
  126. Kalafatovic, D. et al. MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin. Biomater. Sci. 3, 246–249 (2015).
    CAS Google Scholar
  127. Bremmer, S. C., McNeil, A. J. & Soellner, M. B. Enzyme-triggered gelation: Targeting proteases with internal cleavage sites. Chem. Commun. 50, 1691–1693 (2014).
    CAS Google Scholar
  128. Zhou, J., Du, X. & Xu, B. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology. Prion 9, 110–118 (2015).
    CAS Google Scholar
  129. Kuang, Y. et al. Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics. J. Biol. Chem. 289, 29208–29218 (2014).
    CAS Google Scholar
  130. Kuang, Y., Du, X., Zhou, J. & Xu, B. Supramolecular nanofibrils inhibit cancer progression in vitro and in vivo. Adv. Health. Mater. 3, 1217–1221 (2014).
    CAS Google Scholar
  131. Davis, M. E. et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111, 442–450 (2005).
    CAS Google Scholar
  132. Mulyasasmita, W. et al. Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors. J. Control. Release 191, 71–81 (2014).
    CAS Google Scholar
  133. Parisi-Amon, A., Mulyasasmita, W., Chung, C. & Heilshorn, S. C. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Health. Mater. 2, 428–432 (2013).
    CAS Google Scholar
  134. Webber, M. J. et al. Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater. 6, 3–11 (2010).
    CAS Google Scholar
  135. Greenwood-Goodwin, M., Teasley, E. S. & Heilshorn, S. C. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis. Biomater. Sci. 2, 1627–1639 (2014).
    CAS Google Scholar
  136. Du, X. et al. Supramolecular assemblies of a conjugate of nucleobase, amino acids, and saccharide act as agonists for proliferation of embryonic stem cells and development of zygotes. Bioconjug. Chem. 25, 1031–1035 (2014).
    CAS Google Scholar
  137. Berns, E. J. et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 35, 185–195 (2014).
    CAS Google Scholar
  138. Ellis-Behnke, R. G. et al. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl Acad. Sci. USA 103, 5054–5059 (2006).
    CAS Google Scholar
  139. Tysseling-Mattiace, V. M. et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 28, 3814–3823 (2008).
    CAS Google Scholar
  140. Huang, Z., Newcomb, C. J., Bringas, P. Jr, Stupp, S. I. & Snead, M. L. Biological synthesis of tooth enamel instructed by an artificial matrix. Biomaterials 31, 9202–9211 (2010).
    CAS Google Scholar
  141. Galler, K. M., Hartgerink, J. D., Cavender, A. C., Schmalz, G. & D'Souza, R. N. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng. Pt A 18, 176–184 (2012).
    CAS Google Scholar
  142. Koudstaal, S. et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J. Cardiovasc. Transl. 7, 232–241 (2014).
    Google Scholar
  143. Webber, M. J. et al. Capturing the stem cell paracrine effect using heparin-presenting nanofibres to treat cardiovascular diseases. J. Tissue Eng. Regen. M. 4, 600–610 (2010).
    CAS Google Scholar
  144. Lee, S. S. et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials 34, 452–459 (2013).
    CAS Google Scholar
  145. Shah, R. N. et al. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl Acad. Sci. USA 107, 3293–3298 (2010).
    CAS Google Scholar
  146. Soranno, D. E., Lu, H. D., Weber, H. M., Rai, R. & Burdick, J. A. Immunotherapy with injectable hydrogels to treat obstructive nephropathy. J. Biomed. Mater. Res. A 102, 2173–2180 (2014).
    Google Scholar
  147. Dankers, P. Y. W. et al. Development and in-vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials 33, 5144–5155 (2012).
    CAS Google Scholar
  148. Padin-Iruegas, M. E. et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120, 876–887 (2009).
    CAS Google Scholar
  149. Tongers, J. et al. Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix. J. Mol. Cell. Cardiol. 74, 231–239 (2014).
    CAS Google Scholar
  150. Dankers, P. Y. et al. Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials 32, 723–733 (2011).
    CAS Google Scholar
  151. Angeloni, N. L. et al. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials 32, 1091–1101 (2011).
    CAS Google Scholar
  152. Lehn, J. M. Perspectives in chemistry — aspects of adaptive chemistry and materials. Angew. Chem. Intl Ed. 54, 3276–3289 (2015).
    CAS Google Scholar
  153. Hou, S., Wang, X., Park, S., Jin, X. & Ma, P. X. Rapid self-integrating, injectable hydrogel for tissue complex regeneration. Adv. Health. Mater. 4, 1491–1495 (2015).
    CAS Google Scholar
  154. Rudra, J. S. et al. Modulating adaptive immune responses to peptide self-assemblies. ACS Nano 6, 1557–1564 (2012).
    CAS Google Scholar
  155. Rudra, J. S., Tian, Y. F., Jung, J. P. & Collier, J. H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl Acad. Sci. USA 107, 622–627 (2010).
    CAS Google Scholar
  156. Black, M. et al. Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv. Mater. 24, 3845–3849 (2012).
    CAS Google Scholar
  157. Hudalla, G. A. et al. A self-adjuvanting supramolecular vaccine carrying a folded protein antigen. Adv. Health. Mater. 2, 1114–1119 (2013).
    CAS Google Scholar
  158. Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Annu. Med. 35, 564–577 (2003).
    Google Scholar
  159. Xu, J. et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154, 1069–1079 (2001).
    CAS Google Scholar
  160. Ghanaati, S. et al. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials 30, 6202–6212 (2009).
    CAS Google Scholar
  161. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnol. 2, 249–255 (2007).
    CAS Google Scholar
  162. Pal, A. et al. Controlling the structure and length of self-synthesizing supramolecular polymers through nucleated growth and disassembly. Angew. Chem. Intl Ed. 54, 7852–7856 (2015).
    CAS Google Scholar
  163. Ruff, Y., Moyer, T., Newcomb, C. J., Demeler, B. & Stupp, S. I. Precision templating with DNA of a virus-like particle with peptide nanostructures. J. Am. Chem. Soc. 135, 6211–6219 (2013).
    CAS Google Scholar
  164. Chan, I. S. & Ginsburg, G. S. Personalized medicine: Progress and promise. Annu. Rev. Genom. Hum. Genet. 12, 217–244 (2011).
    CAS Google Scholar
  165. de Boer, J. & van Blitterswijk, C. A. Materiomics: High Throughput Screening of Biomaterial Properties (Cambridge Univ. Press, 2013).
    Google Scholar
  166. Collier, J. H. & Segura, T. Evolving the use of peptides as components of biomaterials. Biomaterials 32, 4198–4204 (2011).
    CAS Google Scholar
  167. Appel, E. A. et al. Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nature Commun. 6, 6295 (2015).
    CAS Google Scholar
  168. Pashuck, E. T. & Stevens, M. M. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4, 160sr4 (2012).
    Google Scholar
  169. Prestwich, G. D. et al. What is the greatest regulatory challenge in the translation of biomaterials to the clinic? Sci. Transl. Med. 4, 160cm14 (2012).
    Google Scholar
  170. Zhou, M. et al. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30, 2523–2530 (2009).
    CAS Google Scholar

Download references