Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature428, 487–492 (2004). ArticleCAS Google Scholar
Peppas, N. A. & Langer, R. New challenges in biomaterials. Science263, 1715–1720 (1994). CAS Google Scholar
Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature462, 426–432 (2009). ArticleCAS Google Scholar
Webber, M. J., Khan, O. F., Sydlik, S. A., Tang, B. C. & Langer, R. A perspective on the clinical translation of scaffolds for tissue engineering. Annu. Biomed. Eng.43, 641–656 (2015). Google Scholar
Langer, R. & Vacanti, J. P. Tissue engineering. Science260, 920–926 (1993). CAS Google Scholar
Dong, R. et al. Functional supramolecular polymers for biomedical applications. Adv. Mater.27, 498–526 (2015). CAS Google Scholar
Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science335, 813–817 (2012). ArticleCAS Google Scholar
de Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev.109, 5687–5754 (2009). CAS Google Scholar
Lehn J.-M. Supramolecular chemistry — scope and perspectives. Molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Intl Ed.27, 89–112 (1988). Google Scholar
Appel, E. A., del Barrio, J., Loh, X. J. & Scherman, O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev.41, 6195–6214 (2012). CAS Google Scholar
Seiffert, S. & Sprakel, J. Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev.41, 909–930 (2012). CAS Google Scholar
Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science278, 1601–1604 (1997). CAS Google Scholar
Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nature Mater.10, 14–27 (2011). CAS Google Scholar
Matson, J. B. & Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun.48, 26–33 (2012). CAS Google Scholar
Webber, M. J., Kessler, J. A. & Stupp, S. I. Emerging peptide nanomedicine to regenerate tissues and organs. J. Intern. Med.267, 71–88 (2010). CAS Google Scholar
Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science294, 1684–1688 (2001). CAS Google Scholar
Collier, J. H. et al. Thermally and photochemically triggered self-assembly of peptide hydrogels. J. Am. Chem. Soc.123, 9463–9464 (2001). CAS Google Scholar
Aggeli, A. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature386, 259–262 (1997). CAS Google Scholar
Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl Acad. Sci. USA98, 11857–11862 (2001). CAS Google Scholar
Hauser, C. A. et al. Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures. Proc. Natl Acad. Sci. USA108, 1361–1366 (2011). CAS Google Scholar
Zhang, S. et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials16, 1385–1393 (1995). Google Scholar
Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA104, 7791–7796 (2007). CAS Google Scholar
Schneider, J. P. et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc.124, 15030–15037 (2002). CAS Google Scholar
Berndt, P., Fields, G. B. & Tirrell, M. Synthetic lipidation of peptides and amino-acids — monolayer structure and properties. J. Am. Chem. Soc.117, 9515–9522 (1995). CAS Google Scholar
Hartgerink, J. D., Beniash, E. & Stupp, S. I. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc. Natl Acad. Sci. USA99, 5133–5138 (2002). CAS Google Scholar
Webber, M. J., Berns, E. J. & Stupp, S. I. Supramolecular nanofibers of peptide amphiphiles for medicine. Isr. J. Chem.53, 530–554 (2013). CAS Google Scholar
Yang, Z. M. et al. Enzymatic formation of supramolecular hydrogels. Adv. Mater.16, 1440–1444 (2004). CAS Google Scholar
Jayawarna, V. et al. Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv. Mater.18, 611–614 (2006). CAS Google Scholar
Chen, L. et al. Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation. Langmuir26, 5232–5242 (2010). CAS Google Scholar
Fleming, S. & Ulijn, R. V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev.43, 8150–8177 (2014). CAS Google Scholar
Cui, H., Webber, M. J. & Stupp, S. I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers94, 1–18 (2010). CAS Google Scholar
Kotch, F. W. & Raines, R. T. Self-assembly of synthetic collagen triple helices. Proc. Natl Acad. Sci. USA103, 3028–3033 (2006). CAS Google Scholar
Gauba, V. & Hartgerink, J. D. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions. J. Am. Chem. Soc.129, 2683–2690 (2007). CAS Google Scholar
Li, Y. & Yu, S. M. Targeting and mimicking collagens via triple helical peptide assembly. Curr. Opin. Chem. Biol.17, 968–975 (2013). CAS Google Scholar
Banwell, E. F. et al. Rational design and application of responsive alpha-helical peptide hydrogels. Nature Mater.8, 596–600 (2009). CAS Google Scholar
Jing, P., Rudra, J. S., Herr, A. B. & Collier, J. H. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules9, 2438–2446 (2008). CAS Google Scholar
Gradisar, H. et al. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nature Chem. Biol.9, 362–366 (2013). CAS Google Scholar
Fletcher, J. M. et al. Self-assembling cages from coiled-coil peptide modules. Science340, 595–599 (2013). CAS Google Scholar
Ryadnov, M. G. & Woolfson, D. N. Engineering the morphology of a self-assembling protein fibre. Nature Mater.2, 329–332 (2003). CAS Google Scholar
Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science281, 389–392 (1998). CAS Google Scholar
Shen, W., Zhang, K., Kornfield, J. A. & Tirrell, D. A. Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nature Mater.5, 153–158 (2006). CAS Google Scholar
Lu, H. D., Charati, M. B., Kim, I. L. & Burdick, J. A. Injectable shear-thinning hydrogels engineered with a self-assembling dock-and-lock mechanism. Biomaterials33, 2145–2153 (2012). CAS Google Scholar
Wong Po Foo, C. T. S., Lee, J. S., Mulyasasmita, W., Parisi-Amon, A. & Heilshorn, S. C. Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Natl Acad. Sci. USA106, 22067–22072 (2009). Google Scholar
Davis, M. E. & Brewster, M. E. Cyclodextrin-based pharmaceutics: Past, present and future. Nature Rev. Drug Discov.3, 1023–1035 (2004). CAS Google Scholar
Rodell, C. B., Kaminski, A. & Burdick, J. A. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules14, 4125–4134 (2013). CAS Google Scholar
Kakuta, T. et al. Preorganized hydrogel: Self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater.25, 2849–2853 (2013). CAS Google Scholar
Park, K. M. et al. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano6, 2960–2968 (2012). CAS Google Scholar
Davis, M. E. Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv. Drug Deliver. Rev.61, 1189–1192 (2009). CAS Google Scholar
Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A. & Yamaguchi, H. Macroscopic self-assembly through molecular recognition. Nature Chem.3, 34–37 (2010). Google Scholar
Yamaguchi, H. et al. Photoswitchable gel assembly based on molecular recognition. Nature Commun.3, 603 (2012). Google Scholar
Boekhoven, J., Perez, C. M. R., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host–guest chemistry. Angew. Chem. Intl Ed.52, 12077–12080 (2013). CAS Google Scholar
Bartlett, D. W., Su, H., Hildebrandt, I. J., Weber, W. A. & Davis, M. E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA104, 15549–15554 (2007). CAS Google Scholar
Jung, H. et al. 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesenchymal stem cells. Biomacromolecules15, 707–714 (2014). CAS Google Scholar
Yeom, J. et al. Supramolecular hydrogels for long-term bioengineered stem cell therapy. Adv. Health. Mater.4, 237–244 (2015). CAS Google Scholar
Appel, E. A. et al. Supramolecular cross-linked networks via host–guest complexation with cucurbit[8]uril. J. Am. Chem. Soc.132, 14251–14260 (2010). CAS Google Scholar
Appel, E. A., Forster, R. A., Koutsioubas, A., Toprakcioglu, C. & Scherman, O. A. Activation energies control macroscopic properties of physically crosslinked materials. Angew. Chem. Intl Ed.53, 10038–10043 (2014). CAS Google Scholar
Appel, E. A. et al. High-water-content hydrogels from renewable resources through host–guest interactions. J. Am. Chem. Soc.134, 11767–11773 (2012). CAS Google Scholar
Dankers, P. Y. W., Harmsen, M. C., Brouwer, L. A., Van Luyn, M. J. A. & Meijer, E. W. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nature Mater.4, 568–574 (2005). CAS Google Scholar
Dankers, P. Y. W. et al. Hierarchical formation of supramolecular transient networks in water: A modular injectable delivery system. Adv. Mater.24, 2703–2709 (2012). CAS Google Scholar
Wisse, E. et al. Multicomponent supramolecular thermoplastic elastomer with peptide-modified nanofibers. J. Polym. Sci. Pol. Chem.49, 1764–1771 (2011). CAS Google Scholar
Fukushima, K. et al. Supramolecular high-aspect ratio assemblies with strong antifungal activity. Nature Commun.4, 2861 (2013). Google Scholar
Fukushima, K. et al. Broad-spectrum antimicrobial supramolecular assemblies with distinctive size and shape. ACS Nano6, 9191–9199 (2012). CAS Google Scholar
Kim, S. H. et al. A supramolecularly assisted transformation of block-copolymer micelles into nanotubes. Angew. Chem. Intl Ed.48, 4508–4512 (2009). CAS Google Scholar
Leenders, C. M. A. et al. From supramolecular polymers to hydrogel materials. Mater. Horiz.1, 116–120 (2014). CAS Google Scholar
Roosma, J., Mes, T., Leclere, P., Palmans, A. R. A. & Meijer, E. W. Supramolecular materials from benzene-1,3,5-tricarboxamide-based nanorods. J. Am. Chem. Soc.130, 1120–1121 (2008). CAS Google Scholar
Buerkle, L. E., von Recum, H. A. & Rowan, S. J. Toward potential supramolecular tissue engineering scaffolds based on guanosine derivatives. Chem. Sci.3, 564–572 (2012). CAS Google Scholar
Seeman, N. C. DNA in a material world. Nature421, 427–431 (2003). Google Scholar
Stephanopoulos, N. et al. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett.15, 603–609 (2015). CAS Google Scholar
Fullenkamp, D. E., He, L., Barrett, D. G., Burghardt, W. R. & Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules46, 1167–1174 (2013). CAS Google Scholar
Holten-Andersen, N. et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl Acad. Sci. USA108, 2651–2655 (2011). CAS Google Scholar
Mozhdehi, D., Ayala, S., Cromwell, O. R. & Guan, Z. Self-healing multiphase polymers via dynamic metal–ligand interactions. J. Am. Chem. Soc.136, 16128–16131 (2014). CAS Google Scholar
Beck, J. B. & Rowan, S. J. Multistimuli, multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc.125, 13922–13923 (2003). CAS Google Scholar
Burnworth, M. et al. Optically healable supramolecular polymers. Nature472, 334–337 (2011). CAS Google Scholar
Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharm.6, 659–668 (2009). CAS Google Scholar
Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature464, 1067–1070 (2010). CAS Google Scholar
An, Q. et al. A Supramolecular system for the electrochemically controlled release of cells. Angew. Chem. Intl Ed.51, 12233–12237 (2012). CAS Google Scholar
Hudalla, G. A. et al. Gradated assembly of multiple proteins into supramolecular nanomaterials. Nature Mater.13, 829–836 (2014). CAS Google Scholar
Capito, R. M., Azevedo, H. S., Velichko, Y. S., Mata, A. & Stupp, S. I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science319, 1812–1816 (2008). CAS Google Scholar
Guo, M. Y., Cao, X. Y., Meijer, E. W. & Dankers, P. Y. W. Core–shell capsules based on supramolecular hydrogels show shell-related erosion and release due to confinement. Macromol. Biosci.13, 77–83 (2013). CAS Google Scholar
Mollet, B. B. et al. A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. J. Mater. Chem. B2, 2483–2493 (2014). CAS Google Scholar
Zhang, J. et al. One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science335, 690–694 (2012). CAS Google Scholar
Sur, S., Matson, J. B., Webber, M. J., Newcomb, C. J. & Stupp, S. I. Photodynamic control of bioactivity in a nanofiber matrix. ACS Nano6, 10776–10785 (2012). CAS Google Scholar
Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003). Google Scholar
Yount, W., Loveless, D. & Craig, S. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc.127, 14488–14496 (2005). CAS Google Scholar
Yount, W., Loveless, D. & Craig, S. Strong means slow: Dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Intl Ed.44, 2746–2748 (2005). CAS Google Scholar
Bastings, M. M. C. et al. A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv. Health. Mater3, 70–78 (2014). CAS Google Scholar
Pashuck, E. T., Cui, H. & Stupp, S. I. Tuning supramolecular rigidity of peptide fibers through molecular structure. J. Am. Chem. Soc.132, 6041–6046 (2010). CAS Google Scholar
Mulyasasmita, W., Lee, J. S. & Heilshorn, S. C. Molecular-level engineering of protein physical hydrogels for predictive sol-gel phase behavior. Biomacromolecules12, 3406–3411 (2011). CAS Google Scholar
Appel, E. A., Forster, R. A., Rowland, M. J. & Scherman, O. A. The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Biomaterials35, 9897–9903 (2014). CAS Google Scholar
Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Pt A18, 806–815 (2012). CAS Google Scholar
Newcomb, C. J. et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nature Commun.5, 3321 (2014). Google Scholar
Zhang, S. et al. A self-assembly pathway to aligned monodomain gels. Nature Mater.9, 594–601 (2010). CAS Google Scholar
Cui, H. et al. Spontaneous and X-ray-triggered crystallization at long range in self-assembling filament networks. Science327, 555–559 (2010). CAS Google Scholar
Lu, H. D., Soranno, D. E., Rodell, C. B., Kim, I. L. & Burdick, J. A. Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels. Adv. Health. Mater.2, 1028–1036 (2013). CAS Google Scholar
Hsu, L., Cvetanovich, G. L. & Stupp, S. I. Peptide amphiphile nanofibers with conjugated polydiacetylene backbones in their core. J. Am. Chem. Soc.130, 3892–3899 (2008). CAS Google Scholar
Webber, M. J., Newcomb, C. J., Bitton, R. & Stupp, S. I. Switching of self-assembly in a peptide nanostructure with a specific enzyme. Soft Matter7, 9665–9672 (2011). CAS Google Scholar
Yang, Z., Liang, G., Wang, L. & Xu, B. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J. Am. Chem. Soc.128, 3038–3043 (2006). CAS Google Scholar
Williams, R. J. et al. Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotechnol.4, 19–24 (2009). CAS Google Scholar
Jun, H. W., Yuwono, V., Paramonov, S. E. & Hartgerink, J. D. Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv. Mater.17, 2612–2617 (2005). CAS Google Scholar
Toledano, S., Williams, R. J., Jayawarna, V. & Ulijn, R. V. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc.128, 1070–1071 (2006). CAS Google Scholar
Lin, Y. A., Ou, Y. C., Cheetham, A. G. & Cui, H. Rational design of MMP degradable peptide-based supramolecular filaments. Biomacromolecules15, 1419–1427 (2014). CAS Google Scholar
Pappas, C. G., Sasselli, I. R. & Ulijn, R. V. Biocatalytic pathway selection in transient tripeptide nanostructures. Angew. Chem. Intl Ed.54, 8119–8123 (2015). CAS Google Scholar
Pires, R. A. et al. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc.137, 576–579 (2015). CAS Google Scholar
Frederix, P. W. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nature Chem.7, 30–37 (2015). CAS Google Scholar
Morris, K. L. et al. Chemically programmed self-sorting of gelator networks. Nature Commun.4, 1480 (2014). Google Scholar
Albertazzi, L. et al. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proc. Natl Acad. Sci. USA110, 12203–12208 (2013). CAS Google Scholar
Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science303, 1352–1355 (2004). CAS Google Scholar
Storrie, H. et al. Supramolecular crafting of cell adhesion. Biomaterials28, 4608–4618 (2007). CAS Google Scholar
Webber, M. J. et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc. Natl Acad. Sci. USA108, 13438–13443 (2011). CAS Google Scholar
Liu, J. C., Heilshorn, S. C. & Tirrell, D. A. Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules5, 497–504 (2004). CAS Google Scholar
Heilshorn, S. C., DiZio, K. A., Welsh, E. R. & Tirrell, D. A. Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials24, 4245–4252 (2003). CAS Google Scholar
Panitch, A., Yamaoka, T., Fournier, M. J., Mason, T. L. & Tirrell, D. A. Design and biosynthesis of elastin-like artificial extracellular matrix proteins containing periodically spaced fibronectin CS5 domains. Macromolecules32, 1701–1703 (1999). CAS Google Scholar
Webber, M. J., Matson, J. B., Tamboli, V. K. & Stupp, S. I. Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials33, 6823–6832 (2012). CAS Google Scholar
Zhang, P., Cheetham, A. G., Lin, Y. A. & Cui, H. Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano7, 5965–5977 (2013). CAS Google Scholar
Appel, E. A., Loh, X. J., Jones, S. T., Dreiss, C. A. & Scherman, O. A. Sustained release of proteins from high water content supramolecular hydrogels. Biomaterials33, 4646–4652 (2012). CAS Google Scholar
Cheetham, A. G., Ou, Y. C., Zhang, P. & Cui, H. Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles. Chem. Commun.50, 6039–6042 (2014). CAS Google Scholar
Mulyasasmita, W., Cai, L., Hori, Y. & Heilshorn, S. C. Avidity-controlled delivery of angiogenic peptides from injectable molecular-recognition hydrogels. Tissue Eng. Pt A20, 2102–2114 (2014). CAS Google Scholar
Rajangam, K. et al. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett.6, 2086–2090 (2006). CAS Google Scholar
Lee, S. S. et al. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Health. Mater.4, 131–141 (2015). CAS Google Scholar
Wang, L., Li, L. L., Fan, Y. S. & Wang, H. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater.25, 3888–3898 (2013). CAS Google Scholar
Altunbas, A., Lee, S. J., Rajasekaran, S. A., Schneider, J. P. & Pochan, D. J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials32, 5906–5914 (2011). CAS Google Scholar
Soukasene, S. et al. Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano5, 9113–9121 (2011). CAS Google Scholar
Standley, S. M. et al. Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res.70, 3020–3026 (2010). CAS Google Scholar
Toft, D. J. et al. Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer. ACS Nano6, 7956–7965 (2012). CAS Google Scholar
Zhou, J. & Xu, B. Enzyme-instructed self-assembly: A multistep process for potential cancer therapy. Bioconjug. Chem.26, 987–999 (2015). CAS Google Scholar
Kalafatovic, D. et al. MMP-9 triggered micelle-to-fibre transitions for slow release of doxorubicin. Biomater. Sci.3, 246–249 (2015). CAS Google Scholar
Bremmer, S. C., McNeil, A. J. & Soellner, M. B. Enzyme-triggered gelation: Targeting proteases with internal cleavage sites. Chem. Commun.50, 1691–1693 (2014). CAS Google Scholar
Zhou, J., Du, X. & Xu, B. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology. Prion9, 110–118 (2015). CAS Google Scholar
Kuang, Y. et al. Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics. J. Biol. Chem.289, 29208–29218 (2014). CAS Google Scholar
Kuang, Y., Du, X., Zhou, J. & Xu, B. Supramolecular nanofibrils inhibit cancer progression in vitro and in vivo. Adv. Health. Mater.3, 1217–1221 (2014). CAS Google Scholar
Davis, M. E. et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation111, 442–450 (2005). CAS Google Scholar
Mulyasasmita, W. et al. Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors. J. Control. Release191, 71–81 (2014). CAS Google Scholar
Parisi-Amon, A., Mulyasasmita, W., Chung, C. & Heilshorn, S. C. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv. Health. Mater.2, 428–432 (2013). CAS Google Scholar
Webber, M. J. et al. Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater.6, 3–11 (2010). CAS Google Scholar
Greenwood-Goodwin, M., Teasley, E. S. & Heilshorn, S. C. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis. Biomater. Sci.2, 1627–1639 (2014). CAS Google Scholar
Du, X. et al. Supramolecular assemblies of a conjugate of nucleobase, amino acids, and saccharide act as agonists for proliferation of embryonic stem cells and development of zygotes. Bioconjug. Chem.25, 1031–1035 (2014). CAS Google Scholar
Berns, E. J. et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials35, 185–195 (2014). CAS Google Scholar
Ellis-Behnke, R. G. et al. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl Acad. Sci. USA103, 5054–5059 (2006). CAS Google Scholar
Tysseling-Mattiace, V. M. et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci.28, 3814–3823 (2008). CAS Google Scholar
Huang, Z., Newcomb, C. J., Bringas, P. Jr, Stupp, S. I. & Snead, M. L. Biological synthesis of tooth enamel instructed by an artificial matrix. Biomaterials31, 9202–9211 (2010). CAS Google Scholar
Galler, K. M., Hartgerink, J. D., Cavender, A. C., Schmalz, G. & D'Souza, R. N. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng. Pt A18, 176–184 (2012). CAS Google Scholar
Koudstaal, S. et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J. Cardiovasc. Transl.7, 232–241 (2014). Google Scholar
Webber, M. J. et al. Capturing the stem cell paracrine effect using heparin-presenting nanofibres to treat cardiovascular diseases. J. Tissue Eng. Regen. M.4, 600–610 (2010). CAS Google Scholar
Lee, S. S. et al. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials34, 452–459 (2013). CAS Google Scholar
Shah, R. N. et al. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl Acad. Sci. USA107, 3293–3298 (2010). CAS Google Scholar
Soranno, D. E., Lu, H. D., Weber, H. M., Rai, R. & Burdick, J. A. Immunotherapy with injectable hydrogels to treat obstructive nephropathy. J. Biomed. Mater. Res. A102, 2173–2180 (2014). Google Scholar
Dankers, P. Y. W. et al. Development and in-vivo characterization of supramolecular hydrogels for intrarenal drug delivery. Biomaterials33, 5144–5155 (2012). CAS Google Scholar
Padin-Iruegas, M. E. et al. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation120, 876–887 (2009). CAS Google Scholar
Tongers, J. et al. Enhanced potency of cell-based therapy for ischemic tissue repair using an injectable bioactive epitope presenting nanofiber support matrix. J. Mol. Cell. Cardiol.74, 231–239 (2014). CAS Google Scholar
Dankers, P. Y. et al. Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials32, 723–733 (2011). CAS Google Scholar
Angeloni, N. L. et al. Regeneration of the cavernous nerve by Sonic hedgehog using aligned peptide amphiphile nanofibers. Biomaterials32, 1091–1101 (2011). CAS Google Scholar
Lehn, J. M. Perspectives in chemistry — aspects of adaptive chemistry and materials. Angew. Chem. Intl Ed.54, 3276–3289 (2015). CAS Google Scholar
Hou, S., Wang, X., Park, S., Jin, X. & Ma, P. X. Rapid self-integrating, injectable hydrogel for tissue complex regeneration. Adv. Health. Mater.4, 1491–1495 (2015). CAS Google Scholar
Rudra, J. S. et al. Modulating adaptive immune responses to peptide self-assemblies. ACS Nano6, 1557–1564 (2012). CAS Google Scholar
Rudra, J. S., Tian, Y. F., Jung, J. P. & Collier, J. H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl Acad. Sci. USA107, 622–627 (2010). CAS Google Scholar
Black, M. et al. Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv. Mater.24, 3845–3849 (2012). CAS Google Scholar
Hudalla, G. A. et al. A self-adjuvanting supramolecular vaccine carrying a folded protein antigen. Adv. Health. Mater.2, 1114–1119 (2013). CAS Google Scholar
Ingber, D. E. Mechanobiology and diseases of mechanotransduction. Annu. Med.35, 564–577 (2003). Google Scholar
Xu, J. et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol.154, 1069–1079 (2001). CAS Google Scholar
Ghanaati, S. et al. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials30, 6202–6212 (2009). CAS Google Scholar
Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnol.2, 249–255 (2007). CAS Google Scholar
Pal, A. et al. Controlling the structure and length of self-synthesizing supramolecular polymers through nucleated growth and disassembly. Angew. Chem. Intl Ed.54, 7852–7856 (2015). CAS Google Scholar
Ruff, Y., Moyer, T., Newcomb, C. J., Demeler, B. & Stupp, S. I. Precision templating with DNA of a virus-like particle with peptide nanostructures. J. Am. Chem. Soc.135, 6211–6219 (2013). CAS Google Scholar
Chan, I. S. & Ginsburg, G. S. Personalized medicine: Progress and promise. Annu. Rev. Genom. Hum. Genet.12, 217–244 (2011). CAS Google Scholar
de Boer, J. & van Blitterswijk, C. A. Materiomics: High Throughput Screening of Biomaterial Properties (Cambridge Univ. Press, 2013). Google Scholar
Collier, J. H. & Segura, T. Evolving the use of peptides as components of biomaterials. Biomaterials32, 4198–4204 (2011). CAS Google Scholar
Appel, E. A. et al. Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nature Commun.6, 6295 (2015). CAS Google Scholar
Pashuck, E. T. & Stevens, M. M. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med.4, 160sr4 (2012). Google Scholar
Prestwich, G. D. et al. What is the greatest regulatory challenge in the translation of biomaterials to the clinic? Sci. Transl. Med.4, 160cm14 (2012). Google Scholar
Zhou, M. et al. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials30, 2523–2530 (2009). CAS Google Scholar