Automated monitoring and analysis of social behavior in Drosophila (original) (raw)

References

  1. Manoli, D.S. et al. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400 (2005).
    Article CAS Google Scholar
  2. Demir, E. & Dickson, B.J. fruitless splicing specifies male courtship behavior in Drosophila. Cell 121, 785–794 (2005).
    Article CAS Google Scholar
  3. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B.J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005).
    Article CAS Google Scholar
  4. Vrontou, E., Nilsen, S.P., Demir, E., Kravitz, E.A. & Dickson, B.J. fruitless regulates aggression and dominance in Drosophila. Nat. Neurosci. 9, 1469–1471 (2006).
    Article CAS Google Scholar
  5. Manoli, D.S., Meissner, G.W. & Baker, B.S. Blueprints for behavior: genetic specification of neural circuitry for innate behaviors. Trends Neurosci. 29, 444–451 (2006).
    Article CAS Google Scholar
  6. Callaway, E.M. A molecular and genetic arsenal for systems neuroscience. Trends Neurosci. 28, 196–201 (2005).
    Article CAS Google Scholar
  7. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).
    Article CAS Google Scholar
  8. Suh, G.S. et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854–859 (2004).
    Article CAS Google Scholar
  9. Katsov, A.Y. & Clandinin, T.R. Motion processing streams in Drosophila are behaviorally specialized. Neuron 59, 322–335 (2008).
    Article CAS Google Scholar
  10. de Bono, M. & Maricq, A.V. Neuronal substrates of complex behaviors in C. elegans. Annu. Rev. Neurosci. 28, 451–501 (2005).
    Article CAS Google Scholar
  11. Skrzipek, K.H., Kroner, B. & Hager, H. Inter-male aggression in _Drosophila melanogaster_—laboratory study. J. Comp. Ethol. 49, 87–103 (1979).
    Google Scholar
  12. Hoffmann, A.A. A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans. Anim. Behav. 35, 807–818 (1987).
    Article Google Scholar
  13. Chen, S., Lee, A.Y., Bowens, N.M., Huber, R. & Kravitz, E.A. Fighting fruit flies: a model system for the study of aggression. Proc. Natl. Acad. Sci. USA 99, 5664–5668 (2002).
    Article CAS Google Scholar
  14. Kravitz, E.A. & Huber, R. Aggression in invertebrates. Curr. Opin. Neurobiol. 13, 736–743 (2003).
    Article CAS Google Scholar
  15. Greenspan, R.J. & Ferveur, J.F. Courtship in Drosophila. Annu. Rev. Genet. 34, 205–232 (2000).
    Article CAS Google Scholar
  16. Wehrhahn, C., Poggio, T. & Bülthoff, H. Tracking and chasing in houseflies (Musca). Biol. Cybern. 45, 123–130 (1982).
    Article Google Scholar
  17. Branson, K. & Belongie, S. Tracking multiple mouse contours (without too many samples). IEEE Computer Vision and Pattern Recognition 1, 1039–1046 (2005).
    Google Scholar
  18. Khan, Z., Balch, T. & Dellaert, F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1805–1819 (2005).
    Article Google Scholar
  19. Veeraraghavan, A., Chellappa, R. & Srinivasan, M. Shape-and-behavior encoded tracking of bee dances. IEEE Trans. Pattern Anal. Mach. Intell. 30, 463–476 (2008).
    Article Google Scholar
  20. Fry, S.N., Rohrseitz, N., Straw, A.D. & Dickinson, M.H. TrackFly: virtual reality for a behavioral system analysis in free-flying fruit flies. J. Neurosci. Methods 171, 110–117 (2008).
    Article Google Scholar
  21. Wolf, F.W., Rodan, A.R., Tsai, L.T. & Heberlein, U. High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila. J. Neurosci. 22, 11035–11044 (2002).
    Article CAS Google Scholar
  22. Valente, D., Golani, I. & Mitra, P.P. Analysis of the trajectory of Drosophila melanogaster in a circular open field arena. PLoS ONE 2, e1083 10.1371/journal.pone.0001083 (2007).
    Article PubMed PubMed Central Google Scholar
  23. Hoyer, S.C. et al. Octopamine in male aggression of Drosophila. Curr. Biol. 18, 159–167 (2008).
    Article CAS Google Scholar
  24. Wang, L., Dankert, H., Perona, P. & Anderson, D.J. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc. Natl. Acad. Sci. USA 105, 5657–5663 (2008).
    Article CAS Google Scholar
  25. Dierick, H.A. A method for quantifying aggression in male Drosophila melanogaster. Nat. Protoc. 2, 2712–2718 (2007).
    Article CAS Google Scholar
  26. Bishop, C.M. Pattern Recognition and Machine Learning (Springer, New York) p. 738 (2007).
    Google Scholar
  27. Johns, D.C., Marx, R., Mains, R.E., O'Rourke, B. & Marban, E. Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691–1697 (1999).
    Article CAS Google Scholar
  28. Ferveur, J.F., Stortkuhl, K.F., Stocker, R.F. & Greenspan, R.J. Genetic feminization of brain structures and changed sexual orientation in male Drosophila. Science 267, 902–905 (1995).
    Article CAS Google Scholar
  29. Certel, S.J., Savella, M.G., Schlegel, D.C.F. & Kravitz, E.A. Modulation of Drosophila male behavioral choice. Proc. Natl. Acad. Sci. USA 104, 4706–4711 (2007).
    Article CAS Google Scholar
  30. Otsu, N. A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).
    Article Google Scholar

Download references