Firefly luciferase mutants as sensors of proteome stress (original) (raw)
References
Powers, E.T., Morimoto, R.I., Dillin, A., Kelly, J.W. & Balch, W.E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem.78, 959–991 (2009). ArticleCAS Google Scholar
Vabulas, R.M., Raychaudhuri, S., Hayer-Hartl, M. & Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol.2, a004390 (2010). ArticleCAS Google Scholar
Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem.70, 603–647 (2001). ArticleCAS Google Scholar
Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature443, 780–786 (2006). ArticleCAS Google Scholar
Ben-Zvi, A., Miller, E.A. & Morimoto, R.I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. USA106, 14914–14919 (2009). ArticleCAS Google Scholar
Balch, W.E., Morimoto, R.I., Dillin, A. & Kelly, J.W. Adapting proteostasis for disease intervention. Science319, 916–919 (2008). ArticleCAS Google Scholar
Mu, T.W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell134, 769–781 (2008). ArticleCAS Google Scholar
Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R. & Morimoto, R.I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science311, 1471–1474 (2006). ArticleCAS Google Scholar
Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature370, 111–117 (1994). ArticleCAS Google Scholar
Thulasiraman, V. & Matts, R.L. Effect of geldanamycin on the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate. Biochemistry35, 13443–13450 (1996). ArticleCAS Google Scholar
Nimmesgern, E. & Hartl, F.U. ATP-dependent protein refolding activity in reticulocyte lysate. Evidence for the participation of different chaperone components. FEBS Lett.331, 25–30 (1993). ArticleCAS Google Scholar
Schroder, H., Langer, T., Hartl, F.U. & Bukau, B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J.12, 4137–4144 (1993). ArticleCAS Google Scholar
Conti, E., Franks, N.P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure4, 287–298 (1996). ArticleCAS Google Scholar
Naylor, L.H. Reporter gene technology: the future looks bright. Biochem. Pharmacol.58, 749–757 (1999). ArticleCAS Google Scholar
Hageman, J., Vos, M.J., van Waarde, M.A. & Kampinga, H.H. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding. J. Biol. Chem.282, 34334–34345 (2007). ArticleCAS Google Scholar
Michels, A.A., Nguyen, V.T., Konings, A.W., Kampinga, H.H. & Bensaude, O. Thermostability of a nuclear-targeted luciferase expressed in mammalian cells. Destabilizing influence of the intranuclear microenvironment. Eur. J. Biochem.234, 382–389 (1995). ArticleCAS Google Scholar
Matsui, I. & Harata, K. Implication for buried polar contacts and ion pairs in hyperthermostable enzymes. FEBS J.274, 4012–4022 (2007). ArticleCAS Google Scholar
Schneider, C. et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl. Acad. Sci. USA93, 14536–14541 (1996). ArticleCAS Google Scholar
Sharp, S. & Workman, P. Inhibitors of the HSP90 molecular chaperone: current status. Adv. Cancer Res.95, 323–348 (2006). ArticleCAS Google Scholar
Taipale, M., Jarosz, D.F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol.11, 515–528 (2010). ArticleCAS Google Scholar
Muchowski, P.J. Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron35, 9–12 (2002). ArticleCAS Google Scholar
Broadley, S.A. & Hartl, F.U. The role of molecular chaperones in human misfolding diseases. FEBS Lett.583, 2647–2653 (2009). ArticleCAS Google Scholar
Morimoto, R.I. & Cuervo, A.M. Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J. Gerontol. A Biol. Sci. Med. Sci.64, 167–170 (2009). Article Google Scholar
Kern, A., Ackermann, B., Clement, A.M., Duerk, H. & Behl, C. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS ONE5, e8568 (2010). Article Google Scholar
Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature454, 1088–1095 (2008). ArticleCAS Google Scholar
Nakatsu, T. et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature440, 372–376 (2006). ArticleCAS Google Scholar
Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell23, 887–897 (2006). ArticleCAS Google Scholar