Firefly luciferase mutants as sensors of proteome stress (original) (raw)

References

  1. Powers, E.T., Morimoto, R.I., Dillin, A., Kelly, J.W. & Balch, W.E. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991 (2009).
    Article CAS Google Scholar
  2. Vabulas, R.M., Raychaudhuri, S., Hayer-Hartl, M. & Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol. 2, a004390 (2010).
    Article CAS Google Scholar
  3. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).
    Article CAS Google Scholar
  4. Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).
    Article CAS Google Scholar
  5. Ben-Zvi, A., Miller, E.A. & Morimoto, R.I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. USA 106, 14914–14919 (2009).
    Article CAS Google Scholar
  6. Balch, W.E., Morimoto, R.I., Dillin, A. & Kelly, J.W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008).
    Article CAS Google Scholar
  7. Mu, T.W. et al. Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell 134, 769–781 (2008).
    Article CAS Google Scholar
  8. Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R. & Morimoto, R.I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311, 1471–1474 (2006).
    Article CAS Google Scholar
  9. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994).
    Article CAS Google Scholar
  10. Thulasiraman, V. & Matts, R.L. Effect of geldanamycin on the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate. Biochemistry 35, 13443–13450 (1996).
    Article CAS Google Scholar
  11. Nimmesgern, E. & Hartl, F.U. ATP-dependent protein refolding activity in reticulocyte lysate. Evidence for the participation of different chaperone components. FEBS Lett. 331, 25–30 (1993).
    Article CAS Google Scholar
  12. Schroder, H., Langer, T., Hartl, F.U. & Bukau, B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137–4144 (1993).
    Article CAS Google Scholar
  13. Conti, E., Franks, N.P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287–298 (1996).
    Article CAS Google Scholar
  14. Naylor, L.H. Reporter gene technology: the future looks bright. Biochem. Pharmacol. 58, 749–757 (1999).
    Article CAS Google Scholar
  15. Hageman, J., Vos, M.J., van Waarde, M.A. & Kampinga, H.H. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding. J. Biol. Chem. 282, 34334–34345 (2007).
    Article CAS Google Scholar
  16. Michels, A.A., Nguyen, V.T., Konings, A.W., Kampinga, H.H. & Bensaude, O. Thermostability of a nuclear-targeted luciferase expressed in mammalian cells. Destabilizing influence of the intranuclear microenvironment. Eur. J. Biochem. 234, 382–389 (1995).
    Article CAS Google Scholar
  17. Matsui, I. & Harata, K. Implication for buried polar contacts and ion pairs in hyperthermostable enzymes. FEBS J. 274, 4012–4022 (2007).
    Article CAS Google Scholar
  18. Schneider, C. et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl. Acad. Sci. USA 93, 14536–14541 (1996).
    Article CAS Google Scholar
  19. Sharp, S. & Workman, P. Inhibitors of the HSP90 molecular chaperone: current status. Adv. Cancer Res. 95, 323–348 (2006).
    Article CAS Google Scholar
  20. Taipale, M., Jarosz, D.F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010).
    Article CAS Google Scholar
  21. Muchowski, P.J. Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35, 9–12 (2002).
    Article CAS Google Scholar
  22. Broadley, S.A. & Hartl, F.U. The role of molecular chaperones in human misfolding diseases. FEBS Lett. 583, 2647–2653 (2009).
    Article CAS Google Scholar
  23. Morimoto, R.I. & Cuervo, A.M. Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J. Gerontol. A Biol. Sci. Med. Sci. 64, 167–170 (2009).
    Article Google Scholar
  24. Kern, A., Ackermann, B., Clement, A.M., Duerk, H. & Behl, C. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS ONE 5, e8568 (2010).
    Article Google Scholar
  25. Kaganovich, D., Kopito, R. & Frydman, J. Misfolded proteins partition between two distinct quality control compartments. Nature 454, 1088–1095 (2008).
    Article CAS Google Scholar
  26. Nakatsu, T. et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature 440, 372–376 (2006).
    Article CAS Google Scholar
  27. Behrends, C. et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 23, 887–897 (2006).
    Article CAS Google Scholar

Download references