Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny (original) (raw)
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature449, 1003–1007 (2007). ArticleCASPubMed Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature459, 262–265 (2009). ArticleCASPubMed Google Scholar
Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469, 415–418 (2011). ArticleCASPubMed Google Scholar
Yilmaz, Ö.H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature486, 490–495 (2012). ArticleCASPubMedPubMed Central Google Scholar
Farin, H.F., van Es, J.H. & Clevers, H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology143, 1518–1529 (2012). ArticleCASPubMed Google Scholar
Snippert, H.J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell143, 134–144 (2010). ArticleCASPubMed Google Scholar
Scoville, D.H., Sato, T., He, X.C. & Li, L. Current view: intestinal stem cells and signaling. Gastroenterology134, 849–864 (2008). ArticleCASPubMed Google Scholar
van der Flier, L.G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol.71, 241–260 (2009). ArticleCASPubMed Google Scholar
Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet.7, 349–359 (2006). ArticleCASPubMed Google Scholar
Stanger, B.Z., Datar, R., Murtaugh, L.C. & Melton, D.A. Direct regulation of intestinal fate by Notch. Proc. Natl. Acad. Sci. USA102, 12443–12448 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zecchini, V., Domaschenz, R., Winton, D. & Jones, P. Notch signaling regulates the differentiation of post-mitotic intestinal epithelial cells. Genes Dev.19, 1686–1691 (2005). ArticleCASPubMedPubMed Central Google Scholar
Powell, D.W., Pinchuk, I.V., Saada, J.I., Chen, X. & Mifflin, R.C. Mesenchymal cells of the intestinal lamina propria. Annu. Rev. Physiol.73, 213–237 (2011). ArticleCASPubMedPubMed Central Google Scholar
Greenblatt, D.Y. et al. Valproic acid activates Notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells. Oncologist12, 942–951 (2007). ArticleCASPubMed Google Scholar
Stockhausen, M.T., Sjölund, J., Manetopoulos, C. & Axelson, H. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br. J. Cancer92, 751–759 (2005). ArticleCASPubMedPubMed Central Google Scholar
van der Flier, L.G. et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell136, 903–912 (2009). ArticleCASPubMed Google Scholar
de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature476, 293–297 (2011). CASPubMed Google Scholar
Wang, F. et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology145, 383–395 (2013). ArticleCASPubMed Google Scholar
Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology141, 1762–1772 (2011). ArticleCASPubMed Google Scholar
Jung, P. et al. Isolation and in vitro expansion of human colonic stem cells. Nat. Med.17, 1225–1227 (2011). ArticleCASPubMed Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA102, 15545–15550 (2005). CASPubMedPubMed Central Google Scholar
Muñoz, J. et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J.31, 3079–3091 (2012). ArticlePubMedPubMed Central Google Scholar
Yu, D., Cozma, D., Park, A. & Thomas-Tikhonenko, A. Functional validation of genes implicated in lymphomagenesis: an in vivo selection assay using a Myc-induced B-cell tumor. Ann. NY Acad. Sci.1059, 145–159 (2005). ArticleCASPubMed Google Scholar
Milano, J. et al. Modulation of notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci.82, 341–358 (2004). ArticleCASPubMed Google Scholar
Wong, G.T. et al. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem.279, 12876–12882 (2004). ArticleCASPubMed Google Scholar
van Es, J.H. et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature435, 959–963 (2005). ArticleCASPubMed Google Scholar
Fre, S. et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature435, 964–968 (2005). ArticleCASPubMed Google Scholar
Pellegrinet, L. et al. Dll1- and Dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology140, 1230–1240 (2011). ArticleCASPubMed Google Scholar
Riccio, O. et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep.9, 377–383 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kazanjian, A., Noah, T., Brown, D., Burkart, J. & Shroyer, N.F. Atonal homolog 1 is required for growth and differentiation effects of notch/gamma-secretase inhibitors on normal and cancerous intestinal epithelial cells. Gastroenterology139, 918–928 (2010). ArticleCASPubMed Google Scholar
Kim, T.H. & Shivdasani, R.A. Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of Math1 repression. J. Biol. Chem.286, 11427–11433 (2011). ArticleCASPubMedPubMed Central Google Scholar
VanDussen, K.L. et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development139, 488–497 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shroyer, N.F. et al. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology132, 2478–2488 (2007). ArticleCASPubMed Google Scholar
Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol.14, 637–645 (2002). ArticleCASPubMed Google Scholar
Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science278, 120–123 (1997). ArticleCASPubMed Google Scholar
Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell6, 25–36 (2010). CASPubMed Google Scholar