Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells (original) (raw)
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). ArticleCAS Google Scholar
Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002). ArticleCAS Google Scholar
Gadek, T.R. Strategies and methods in the identification of antagonists of protein-protein interactions. Biotechniques (Suppl.) 34, 21–24 (2003). Article Google Scholar
Bayley, H. & Knowles, J.R. Photoaffinity labeling. Methods Enzymol.46, 69–114 (1977). ArticleCAS Google Scholar
Jacobs, S., Hazum, E., Shechter, Y. & Cuatrecasas, P. Insulin receptor: covalent labeling and identification of subunits. Proc. Natl. Acad. Sci. USA76, 4918–4921 (1979). ArticleCAS Google Scholar
Thiele, C. & Fahrenholz, F. Photoaffinity labeling of central cholecystokinin receptors with high efficiency. Biochemistry32, 2741–2746 (1993). ArticleCAS Google Scholar
Kurzchalia, T.V. et al. The signal sequence of nascent preprolactin interacts with the 54K polypeptide of the signal recognition particle. Nature320, 634–636 (1986). ArticleCAS Google Scholar
Krieg, U.C., Walter, P. & Johnson, A.E. Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. USA83, 8604–8608 (1986). ArticleCAS Google Scholar
Cornish, V.W. et al. Site-specific incorporation of biophysical probes into proteins. Proc. Natl. Acad. Sci. USA91, 2910–2915 (1994). ArticleCAS Google Scholar
Chin, J.W., Martin, A.B., King, D.S., Wang, L. & Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA99, 11020–11024 (2002). ArticleCAS Google Scholar
Deiters, A. et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J. Am. Chem. Soc.125, 11782–11783 (2003). ArticleCAS Google Scholar
Sakamoto, K. et al. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res.30, 4692–4699 (2002). ArticleCAS Google Scholar
Monahan, S.L., Lester, H.A. & Dougherty, D.A. Site-specific incorporation of unnatural amino acids into receptors expressed in mammalian cells. Chem. Biol.10, 573–580 (2003). ArticleCAS Google Scholar
Zhang, Z. et al. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc. Natl. Acad. Sci. USA101, 8882–8887 (2004). ArticleCAS Google Scholar
Harrp, D.N., Bao, L.Q., Black, C.J., Gleason, J.G. & Smith, R.A. An efficient α-halogenation of acyl chlorides by _N_-bromosuccinimide, _N_-chlorosuccinimide, and molecular iodine. J. Org. Chem.40, 3420–3427 (1975). Article Google Scholar
Strecker, A. Ueber die kuenstliche Bildung der Milchsaeure und eines neuen, dem Glycocoll homologen Koerper. Liebigs Ann. Chem.75, 27–45 (1850). Article Google Scholar
Moore, S. & Stein, W.H. Chromatography of amino acids on sulfonated polystyrene resins. J. Biol. Chem.192, 663–681 (1951). CASPubMed Google Scholar
Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J.13, 1287–1296 (1994). ArticleCAS Google Scholar
Sargiacomo, M. et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl. Acad. Sci. USA92, 9407–9411 (1995). ArticleCAS Google Scholar
Thibonnier, M. The human platelet vasopressin receptor identification by direct ultraviolet photoaffinity labeling. J. Biol. Chem.262, 10960–10964 (1987). CASPubMed Google Scholar
Snyers, L., Umlauf, E. & Prohaska, R. Oligomeric nature of the integral membrane protein stomatin. J. Biol. Chem.273, 17221–17226 (1998). ArticleCAS Google Scholar
Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature394, 494–498 (1998). ArticleCAS Google Scholar
Falkenstein, E., Meyer, C., Eisen, C., Scriba, P.C. & Wehling, M. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem. Biophys. Res. Commun.229, 86–89 (1996). ArticleCAS Google Scholar
Kanai, Y. et al. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem.273, 23629–23632 (1998). ArticleCAS Google Scholar
Ferrell, K., Wilkinson, C.R., Dubiel, W. & Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci.25, 83–88 (2000). ArticleCAS Google Scholar
Fu, H., Reis, N., Lee, Y., Glickman, M.H. & Vierstra, R.D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J.20, 7096–7107 (2001). ArticleCAS Google Scholar
Brown, M.S. & Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl. Acad. Sci. USA96, 11041–11048 (1999). ArticleCAS Google Scholar
Yang, T. et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell110, 489–500 (2002). ArticleCAS Google Scholar
Horton, J.D., Goldstein, J.L. & Brown, M.S. SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb. Symp. Quant. Biol.67, 491–498 (2002). ArticleCAS Google Scholar
Adams, C.M. et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and insigs. J. Biol. Chem.279, 52772–52780 (2004). ArticleCAS Google Scholar
Nolte, I., Jeckel, D., Wieland, F.T. & Sohn, K. Localization and topology of ratp28, a member of a novel family of putative steroid-binding proteins. Biochim. Biophys. Acta1543, 123–130 (2000). ArticleCAS Google Scholar
Hendrickson, T.L., de Crecy-Lagard, V. & Schimmel, P. Incorporation of nonnatural amino acids into proteins. Annu. Rev. Biochem.73, 147–176 (2004). ArticleCAS Google Scholar
Kiick, K.L., Weberskirch, R. & Tirrell, D.A. Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett.502, 25–30 (2001). ArticleCAS Google Scholar
Link, A.J., Mock, M.L. & Tirrell, D.A. Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol.14, 603–609 (2003). ArticleCAS Google Scholar
Rennert, O.M. & Anker, H.S. On the incorporation of 5′,5′,5′-trifluoroleucine into proteins of E. coli. Biochemistry13, 471–476 (1963). Article Google Scholar
Doring, V. et al. Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science292, 501–504 (2001). ArticleCAS Google Scholar
Mursinna, R.S. & Martinis, S.A. Rational design to block amino acid editing of a tRNA synthetase. J. Am. Chem. Soc.124, 7286–7287 (2002). ArticleCAS Google Scholar
Tang, Y. & Tirrell, D.A. Attenuation of the editing activity of the Escherichia coli leucyl-tRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Biochemistry41, 10635–10645 (2002). ArticleCAS Google Scholar
Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA93, 13–20 (1996). ArticleCAS Google Scholar
Dupree, P., Parton, R.G., Raposo, G., Kurzchalia, T.V. & Simons, K. Caveolae and sorting in the _trans_-Golgi network of epithelial cells. EMBO J.12, 1597–1605 (1993). ArticleCAS Google Scholar
Thiele, C., Hannah, M.J., Fahrenholz, F. & Huttner, W.B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol.2, 42–49 (2000). ArticleCAS Google Scholar
Wessel, D. & Fluegge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem.138, 141–143 (1984). ArticleCAS Google Scholar
Udenfriend, S. et al. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science178, 871–872 (1972). ArticleCAS Google Scholar
Tourasse, N.J. & Li, W.H. Selective constraints, amino acid composition, and the rate of protein evolution. Mol. Biol. Evol.17, 656–664 (2000). ArticleCAS Google Scholar