Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots (original) (raw)

References

  1. Anderson, K.D., Karle, E.J. & Reiner, A. A pre-embedding triple-label electron microscopic immunohistochemical method as applied to the study of multiple inputs to defined tegmental neurons. J. Histochem. Cytochem. 42, 49–56 (1994).
    Article CAS Google Scholar
  2. Nisman, R., Dellaire, G., Ren, Y., Li, R. & Bazett-Jones, D.P. Application of quantum dots as probes for correlative fluorescence, conventional, and energy-filtered transmission electron microscopy. J. Histochem. Cytochem. 52, 13–18 (2004).
    Article CAS Google Scholar
  3. Takizawa, T., Suzuki, K. & Robinson, J.M. Correlative microscopy using FluoroNanogold on ultrathin cryosections. Proof of principle. J. Histochem. Cytochem. 46, 1097–1102 (1998).
    Article CAS Google Scholar
  4. Shiao, Y.H., Resau, J.H., Nagashima, K., Anderson, L.M. & Ramakrishna, G. The von Hippel-Lindau tumor suppressor targets to mitochondria. Cancer Res. 60, 2816–2819 (2000).
    CAS PubMed Google Scholar
  5. Deerinck, T.J. et al. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy. J. Cell Biol. 126, 901–910 (1994).
    Article CAS Google Scholar
  6. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).
    Article CAS Google Scholar
  7. Chan, W.C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).
    Article CAS Google Scholar
  8. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
    Article CAS Google Scholar
  9. Han, M., Gao, X., Su, J.Z. & Nie, S. Quantum dot–tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).
    Article CAS Google Scholar
  10. Chan, W.C. et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002).
    Article CAS Google Scholar
  11. Voura, E.B., Jaiswal, J.K., Mattoussi, H. & Simon, S.M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10, 993–998 (2004).
    Article CAS Google Scholar
  12. Grecco, H.E. et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc. Res. Tech. 65, 169–179 (2004).
    Article CAS Google Scholar
  13. Liu, C., Miller, P.D., Henstrom, W.L. & Gibson, J.M. Transmission electron microscopy of semiconductor quantum dots. J. Microsc. 199, 130–140 (2000).
    Article CAS Google Scholar
  14. Herve, J.C., Bourmeyster, N. & Sarrouilhe, D. Diversity in protein-protein interactions of connexins: emerging roles. Biochim. Biophys. Acta 1662, 22–41 (2004).
    Article CAS Google Scholar
  15. Giepmans, B.N. Gap junctions and connexin-interacting proteins. Cardiovasc. Res. 62, 233–245 (2004).
    Article CAS Google Scholar
  16. Humbel, B.M., de Jong, M.D., Muller, W.H. & Verkleij, A.J. Pre-embedding immunolabeling for electron microscopy: an evaluation of permeabilization methods and markers. Microsc. Res. Tech. 42, 43–58 (1998).
    Article CAS Google Scholar
  17. Martone, M.E., Deerinck, T.J., Yamada, N., Bushong, E. & Ellisman, M.H. Correlated 3D light and electron microscopy: use of high voltage electron microscopy and electron tomography for imaging large biological structures. J. Histotechnology 23, 261–270 (2000).
    Article Google Scholar
  18. Phend, K.D., Rustioni, A. & Weinberg, R.J. An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J. Histochem. Cytochem. 43, 283–292 (1995).
    Article CAS Google Scholar
  19. Horisberger, M. & Vauthey, M. Labelling of colloidal gold with protein. A quantitative study using β-lactoglobulin. Histochemistry 80, 13–18 (1984).
    Article CAS Google Scholar
  20. Mansson, A. et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun. 314, 529–534 (2004).
    Article CAS Google Scholar
  21. Hanaki, K. et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun. 302, 496–501 (2003).
    Article CAS Google Scholar
  22. Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002).
    Article CAS Google Scholar
  23. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).
    Article CAS Google Scholar
  24. Jain, R.K. & Stroh, M. Zooming in and out with quantum dots. Nat. Biotechnol. 22, 959–960 (2004).
    Article CAS Google Scholar
  25. Bobik, M., Ellisman, M.H., Rudy, B. & Martone, M.E. Potassium channel subunit Kv3.2 and the water channel aquaporin-4 are selectively localized to cerebellar pinceau. Brain Res. 1026, 168–178 (2004).
    Article CAS Google Scholar
  26. Lidke, D.S. et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22, 198–203 (2004).
    Article CAS Google Scholar
  27. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).
    Article CAS Google Scholar
  28. Tour, O., Meijer, R.M., Zacharias, D.A., Adams, S.R. & Tsien, R.Y. Genetically targeted chromophore-assisted light inactivation. Nat. Biotechnol. 21, 1505–1508 (2003).
    Article CAS Google Scholar

Download references