Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET) (original) (raw)

References

  1. Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13 (1994).
    CAS PubMed Google Scholar
  2. Eidne, K.A., Kroeger, K.M. & Hanyaloglu, A.C. Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol. Metab. 13, 415–421 (2002).
    CAS PubMed Google Scholar
  3. Pfleger, K.D.G. & Eidne, K.A. Monitoring the formation of dynamic G protein–coupled receptor-protein complexes in living cells. Biochem. J. 385, 625–637 (2005).
    CAS PubMed PubMed Central Google Scholar
  4. Milligan, G. & Bouvier, M. Methods to monitor the quaternary structure of G protein–coupled receptors. FEBS J. 272, 2914–2925 (2005).
    CAS PubMed Google Scholar
  5. Germain-Desprez, D., Bazinet, M., Bouvier, M. & Aubry, M. Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells. J. Biol. Chem. 278, 22367–22373 (2003).
    CAS PubMed Google Scholar
  6. Boute, N., Jockers, R. & Issad, T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 23, 351–354 (2002).
    CAS PubMed Google Scholar
  7. Selvin, P.R. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 730–734 (2000).
    CAS PubMed Google Scholar
  8. Rizzo, M.A. & Piston, D.W. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys. J. 88, L14–L16 (2005).
    CAS PubMed Google Scholar
  9. Xu, Y., Kanauchi, A., von Arnim, A.G., Piston, D.W. & Johnson, C.H. Bioluminescence resonance energy transfer: monitoring protein-protein interactions in living cells. Methods Enzymol. 360, 289–301 (2003).
    CAS PubMed Google Scholar
  10. Maurel, D. et al. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal. Biochem. 329, 253–262 (2004).
    CAS PubMed Google Scholar
  11. Terrillon, S. et al. Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol. 17, 677–691 (2003).
    CAS PubMed Google Scholar
  12. Ayoub, M.A. et al. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 21522–21528 (2002).
    CAS PubMed Google Scholar
  13. Yamakawa, Y., Ueda, H., Kitayama, A. & Nagamune, T. Rapid homogeneous immunoassay of peptides based on bioluminescence resonance energy transfer from firefly luciferase. J. Biosci. Bioeng. 93, 537–542 (2002).
    CAS PubMed Google Scholar
  14. Xu, Y., Piston, D.W. & Johnson, C.H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96, 151–156 (1999).
    CAS PubMed PubMed Central Google Scholar
  15. Paulmurugan, R. & Gambhir, S.S. Monitoring protein-protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal. Chem. 75, 1584–1589 (2003).
    CAS PubMed PubMed Central Google Scholar
  16. Liu, J. & Escher, A. Improved assay sensitivity of an engineered secreted Renilla luciferase. Gene 237, 153–159 (1999).
    CAS PubMed Google Scholar
  17. Jensen, A.A., Hansen, J.L., Sheikh, S.P. & Brauner-Osborne, H. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). Eur. J. Biochem. 269, 5076–5087 (2002).
    CAS PubMed Google Scholar
  18. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).
    CAS PubMed Google Scholar
  19. Angers, S. et al. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689 (2000).
    CAS PubMed PubMed Central Google Scholar
  20. Koshimizu, T.A., Tsujimoto, G., Hirasawa, A., Kitagawa, Y. & Tanoue, A. Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc. Res. 63, 662–672 (2004).
    CAS PubMed Google Scholar
  21. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).
    CAS PubMed Google Scholar
  22. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).
    CAS PubMed Google Scholar
  23. Hamdan, F.F., Audet, M., Garneau, P., Pelletier, J. & Bouvier, M. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J. Biomol. Screen. 10, 463–475 (2005).
    CAS PubMed Google Scholar
  24. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).
    CAS PubMed Google Scholar
  25. Arai, R., Nakagawa, H., Kitayama, A., Ueda, H. & Nagamune, T. Detection of protein-protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein. J. Biosci. Bioeng. 94, 362–364 (2002).
    CAS PubMed Google Scholar
  26. Tannous, B.A., Kim, D.E., Fernandez, J.L., Weissleder, R. & Breakefield, X.O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther. 11, 435–443 (2005).
    CAS PubMed Google Scholar
  27. Pfleger, K.D.G. & Eidne, K.A. New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein coupled receptors. Pituitary 6, 141–151 (2003).
    CAS PubMed Google Scholar
  28. Gales, C. et al. Real-time monitoring of receptor and G protein–interactions in living cells. Nat. Methods 2, 177–184 (2005).
    CAS PubMed Google Scholar
  29. Hanyaloglu, A.C., Seeber, R.M., Kohout, T.A., Lefkowitz, R.J. & Eidne, K.A. Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes. Differential regulation of beta-arrestins 1 and 2. J. Biol. Chem. 277, 50422–50430 (2002).
    CAS PubMed Google Scholar
  30. Kroeger, K.M., Hanyaloglu, A.C., Seeber, R.M., Miles, L.E. & Eidne, K.A. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. 276, 12736–12743 (2001).
    CAS PubMed Google Scholar
  31. Bertrand, L. et al. The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). J. Recept. Signal Transduct. Res. 22, 533–541 (2002).
    CAS PubMed Google Scholar
  32. Mercier, J.F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).
    CAS PubMed Google Scholar
  33. Issafras, H. et al. Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J. Biol. Chem. 277, 34666–34673 (2002).
    CAS PubMed Google Scholar
  34. Gomes, I., Filipovska, J., Jordan, B.A. & Devi, L.A. Oligomerization of opioid receptors. Methods 27, 358–365 (2002).
    CAS PubMed Google Scholar
  35. Breit, A., Lagace, M. & Bouvier, M. Hetero-oligomerization between β2- and β3-adrenergic receptors generates a β-adrenergic signaling unit with distinct functional properties. J. Biol. Chem. 279, 28756–28765 (2004).
    CAS PubMed Google Scholar
  36. De, A. & Gambhir, S.S. Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J. 19, 2017–2019 (2005).
    CAS PubMed Google Scholar
  37. Ayoub, M.A., Levoye, A., Delagrange, P. & Jockers, R. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol. Pharmacol. 66, 312–321 (2004).
    CAS PubMed Google Scholar
  38. Wilson, S., Wilkinson, G. & Milligan, G. The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J. Biol. Chem. 280, 28663–28674 (2005).
    CAS PubMed Google Scholar
  39. Couturier, C. & Jockers, R. Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J. Biol. Chem. 278, 26604–26611 (2003).
    CAS PubMed Google Scholar
  40. Veatch, W. & Stryer, L. The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J. Mol. Biol. 113, 89–102 (1977).
    CAS PubMed Google Scholar
  41. Devost, D. & Zingg, H.H. Homo- and hetero-dimeric complex formations of the human oxytocin receptor. J. Neuroendocrinol. 16, 372–377 (2004).
    CAS PubMed Google Scholar
  42. Perroy, J., Pontier, S., Charest, P.G., Aubry, M. & Bouvier, M. Real-time monitoring of ubiquitination in living cells by BRET. Nat. Methods 1, 203–208 (2004).
    CAS PubMed Google Scholar
  43. Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).
    CAS PubMed PubMed Central Google Scholar
  44. Ramsay, D., Kellett, E., McVey, M., Rees, S. & Milligan, G. Homo- and hetero-oligomeric interactions between G protein–coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem. J. 365, 429–440 (2002).
    CAS PubMed PubMed Central Google Scholar
  45. Pfleger, K.D.G. et al. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Cell. Signal. (in the press).
  46. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).
    CAS PubMed Google Scholar

Download references