Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET) (original) (raw)
References
Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem.218, 1–13 (1994). CASPubMed Google Scholar
Eidne, K.A., Kroeger, K.M. & Hanyaloglu, A.C. Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol. Metab.13, 415–421 (2002). CASPubMed Google Scholar
Pfleger, K.D.G. & Eidne, K.A. Monitoring the formation of dynamic G protein–coupled receptor-protein complexes in living cells. Biochem. J.385, 625–637 (2005). CASPubMedPubMed Central Google Scholar
Milligan, G. & Bouvier, M. Methods to monitor the quaternary structure of G protein–coupled receptors. FEBS J.272, 2914–2925 (2005). CASPubMed Google Scholar
Germain-Desprez, D., Bazinet, M., Bouvier, M. & Aubry, M. Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells. J. Biol. Chem.278, 22367–22373 (2003). CASPubMed Google Scholar
Boute, N., Jockers, R. & Issad, T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci.23, 351–354 (2002). CASPubMed Google Scholar
Selvin, P.R. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol.7, 730–734 (2000). CASPubMed Google Scholar
Rizzo, M.A. & Piston, D.W. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys. J.88, L14–L16 (2005). CASPubMed Google Scholar
Xu, Y., Kanauchi, A., von Arnim, A.G., Piston, D.W. & Johnson, C.H. Bioluminescence resonance energy transfer: monitoring protein-protein interactions in living cells. Methods Enzymol.360, 289–301 (2003). CASPubMed Google Scholar
Maurel, D. et al. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal. Biochem.329, 253–262 (2004). CASPubMed Google Scholar
Terrillon, S. et al. Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol.17, 677–691 (2003). CASPubMed Google Scholar
Ayoub, M.A. et al. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem.277, 21522–21528 (2002). CASPubMed Google Scholar
Yamakawa, Y., Ueda, H., Kitayama, A. & Nagamune, T. Rapid homogeneous immunoassay of peptides based on bioluminescence resonance energy transfer from firefly luciferase. J. Biosci. Bioeng.93, 537–542 (2002). CASPubMed Google Scholar
Xu, Y., Piston, D.W. & Johnson, C.H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA96, 151–156 (1999). CASPubMedPubMed Central Google Scholar
Paulmurugan, R. & Gambhir, S.S. Monitoring protein-protein interactions using split synthetic Renilla luciferase protein-fragment-assisted complementation. Anal. Chem.75, 1584–1589 (2003). CASPubMedPubMed Central Google Scholar
Liu, J. & Escher, A. Improved assay sensitivity of an engineered secreted Renilla luciferase. Gene237, 153–159 (1999). CASPubMed Google Scholar
Jensen, A.A., Hansen, J.L., Sheikh, S.P. & Brauner-Osborne, H. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). Eur. J. Biochem.269, 5076–5087 (2002). CASPubMed Google Scholar
Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science273, 1392–1395 (1996). CASPubMed Google Scholar
Angers, S. et al. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA97, 3684–3689 (2000). CASPubMedPubMed Central Google Scholar
Koshimizu, T.A., Tsujimoto, G., Hirasawa, A., Kitagawa, Y. & Tanoue, A. Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc. Res.63, 662–672 (2004). CASPubMed Google Scholar
Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem.67, 509–544 (1998). CASPubMed Google Scholar
Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol.20, 87–90 (2002). CASPubMed Google Scholar
Hamdan, F.F., Audet, M., Garneau, P., Pelletier, J. & Bouvier, M. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J. Biomol. Screen.10, 463–475 (2005). CASPubMed Google Scholar
Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem.276, 29188–29194 (2001). CASPubMed Google Scholar
Arai, R., Nakagawa, H., Kitayama, A., Ueda, H. & Nagamune, T. Detection of protein-protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein. J. Biosci. Bioeng.94, 362–364 (2002). CASPubMed Google Scholar
Tannous, B.A., Kim, D.E., Fernandez, J.L., Weissleder, R. & Breakefield, X.O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther.11, 435–443 (2005). CASPubMed Google Scholar
Pfleger, K.D.G. & Eidne, K.A. New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein coupled receptors. Pituitary6, 141–151 (2003). CASPubMed Google Scholar
Gales, C. et al. Real-time monitoring of receptor and G protein–interactions in living cells. Nat. Methods2, 177–184 (2005). CASPubMed Google Scholar
Hanyaloglu, A.C., Seeber, R.M., Kohout, T.A., Lefkowitz, R.J. & Eidne, K.A. Homo- and hetero-oligomerization of thyrotropin-releasing hormone (TRH) receptor subtypes. Differential regulation of beta-arrestins 1 and 2. J. Biol. Chem.277, 50422–50430 (2002). CASPubMed Google Scholar
Kroeger, K.M., Hanyaloglu, A.C., Seeber, R.M., Miles, L.E. & Eidne, K.A. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem.276, 12736–12743 (2001). CASPubMed Google Scholar
Bertrand, L. et al. The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). J. Recept. Signal Transduct. Res.22, 533–541 (2002). CASPubMed Google Scholar
Mercier, J.F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem.277, 44925–44931 (2002). CASPubMed Google Scholar
Issafras, H. et al. Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J. Biol. Chem.277, 34666–34673 (2002). CASPubMed Google Scholar
Gomes, I., Filipovska, J., Jordan, B.A. & Devi, L.A. Oligomerization of opioid receptors. Methods27, 358–365 (2002). CASPubMed Google Scholar
Breit, A., Lagace, M. & Bouvier, M. Hetero-oligomerization between β2- and β3-adrenergic receptors generates a β-adrenergic signaling unit with distinct functional properties. J. Biol. Chem.279, 28756–28765 (2004). CASPubMed Google Scholar
De, A. & Gambhir, S.S. Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J.19, 2017–2019 (2005). CASPubMed Google Scholar
Ayoub, M.A., Levoye, A., Delagrange, P. & Jockers, R. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol. Pharmacol.66, 312–321 (2004). CASPubMed Google Scholar
Wilson, S., Wilkinson, G. & Milligan, G. The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J. Biol. Chem.280, 28663–28674 (2005). CASPubMed Google Scholar
Couturier, C. & Jockers, R. Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J. Biol. Chem.278, 26604–26611 (2003). CASPubMed Google Scholar
Veatch, W. & Stryer, L. The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J. Mol. Biol.113, 89–102 (1977). CASPubMed Google Scholar
Devost, D. & Zingg, H.H. Homo- and hetero-dimeric complex formations of the human oxytocin receptor. J. Neuroendocrinol.16, 372–377 (2004). CASPubMed Google Scholar
Perroy, J., Pontier, S., Charest, P.G., Aubry, M. & Bouvier, M. Real-time monitoring of ubiquitination in living cells by BRET. Nat. Methods1, 203–208 (2004). CASPubMed Google Scholar
Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol.21, 539–545 (2003). CASPubMedPubMed Central Google Scholar
Ramsay, D., Kellett, E., McVey, M., Rees, S. & Milligan, G. Homo- and hetero-oligomeric interactions between G protein–coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem. J.365, 429–440 (2002). CASPubMedPubMed Central Google Scholar
Pfleger, K.D.G. et al. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Cell. Signal. (in the press).
Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene173, 33–38 (1996). CASPubMed Google Scholar