A pooling-deconvolution strategy for biological network elucidation (original) (raw)
Phizicky, E., Bastiaens, P.I., Zhu, H., Snyder, M. & Fields, S. Protein analysis on a proteomic scale. Nature422, 208–215 (2003). CASPubMed Google Scholar
Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature403, 623–627 (2000). CASPubMed Google Scholar
Ito, T. et al. Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl. Acad. Sci. USA97, 1143–1147 (2000). CASPubMedPubMed Central Google Scholar
Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science302, 1727–1736 (2003). CASPubMed Google Scholar
Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell122, 957–968 (2005). CASPubMed Google Scholar
Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature437, 1173–1178 (2005). CASPubMed Google Scholar
Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature415, 141–147 (2002). CASPubMed Google Scholar
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415, 180–183 (2002). CASPubMed Google Scholar
Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature433, 531–537 (2005). CASPubMed Google Scholar
Zhu, H. et al. Global analysis of protein activities using proteome chips. Science293, 2101–2105 (2001). CASPubMed Google Scholar
Michaud, G.A. et al. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol.21, 1509–1512 (2003). CASPubMed Google Scholar
Zhong, J., Zhang, H., Stanyon, C.A., Tromp, G. & Finley, R.L., Jr. A strategy for constructing large protein interaction maps using the yeast two-hybrid system: regulated expression arrays and two-phase mating. Genome Res.13, 2691–2699 (2003). CASPubMedPubMed Central Google Scholar
Hazbun, T.R. et al. Assigning function to yeast proteins by integration of technologies. Mol. Cell12, 1353–1365 (2003). CASPubMed Google Scholar
Wu, X., Hart, H., Cheng, C., Roach, P.J. & Tatchell, K. Characterization of Gac1p, a regulatory subunit of protein phosphatase type I involved in glycogen accumulation in Saccharomyces cerevisiae. Mol. Genet. Genomics265, 622–635 (2001). CASPubMed Google Scholar
Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science285, 901–906 (1999). CASPubMed Google Scholar
Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature418, 387–391 (2002). CASPubMed Google Scholar
Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science253, 905–909 (1991). CASPubMed Google Scholar
Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res.32 (Database issue), D449–D451 (2004). CASPubMedPubMed Central Google Scholar
Grigoriev, A. On the number of protein-protein interactions in the yeast proteome. Nucleic Acids Res.31, 4157–4161 (2003). CASPubMedPubMed Central Google Scholar
Bork, P. et al. Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol.14, 292–299 (2004). CASPubMed Google Scholar
Janda, K.D. Tagged versus untagged libraries: methods for the generation and screening of combinatorial chemical libraries. Proc. Natl. Acad. Sci. USA91, 10779–10785 (1994). CASPubMedPubMed Central Google Scholar
Agyare, F.D. et al. Mapping expressed sequence tag sites on yeast artificial chromosome clones of Arabidopsis thaliana DNA. Genome Res.7, 1–9 (1997). CASPubMed Google Scholar
Jeong, H., Mason, S.P., Barabasi, A.L. & Oltvai, Z.N. Lethality and centrality in protein networks. Nature411, 41–42 (2001). CASPubMed Google Scholar
Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. & Barabasi, A.L. The large-scale organization of metabolic networks. Nature407, 651–654 (2000). CASPubMed Google Scholar
Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev.17, 545–580 (2003). CASPubMed Google Scholar
Gray, P.A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science306, 2255–2257 (2004). CASPubMed Google Scholar
Barry, J.R., Lee, E.A. & Messerschmitt, D.G. Digital communication 3rd edn. (Kluwer Academic Publishers, Boston, 2004). Google Scholar
Khan, A.H., Ossadtchi, A., Leahy, R.M. & Smith, D.J. Error-correcting microarray design. Genomics81, 157–165 (2003). CASPubMed Google Scholar
Milo, R. et al. Network motifs: simple building blocks of complex networks. Science298, 824–827 (2002). CASPubMed Google Scholar
Zewail, A. et al. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc. Natl. Acad. Sci. USA100, 3345–3350 (2003). CASPubMedPubMed Central Google Scholar
Xie, M.W. et al. Insights into TOR function and rapamycin response: Chemical genomic profiling by using a high-density cell array method. Proc. Natl. Acad. Sci. USA102, 7215–7220 (2005). CASPubMedPubMed Central Google Scholar