Accurate phylogenetic classification of variable-length DNA fragments (original) (raw)
Venter, J.C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science304, 66–74 (2004). ArticleCASPubMed Google Scholar
Tringe, S.G. et al. Comparative metagenomics of microbial communities. Science308, 554–557 (2005). ArticleCASPubMed Google Scholar
Tyson, G.W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature428, 37–43 (2004). ArticleCASPubMed Google Scholar
Hugenholtz, P. Exploring prokaryotic diversity in the genomic era. Genome Biol.,3, REVIEWS0003 (2002).
Woese, C.R. & Fox, G.E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA74, 5088–5090 (1977). ArticleCASPubMedPubMed Central Google Scholar
Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Tatusov, R.L. & Koonin, E.V. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol.1, 8 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ciccarelli, F.D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science311, 1283–1287 (2006). ArticleCASPubMed Google Scholar
Cole, J.R. et al. The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res.33, D294–D296 (2005). ArticleCASPubMed Google Scholar
Garcìa Martin, H. et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat. Biotechnol.24, 1263–1269 (2006). ArticlePubMed Google Scholar
Teeling, H., Meyerdierks, A., Bauer, M., Amann, R. & Glockner, F.O. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ. Microbiol.6, 938–947 (2004). ArticleCASPubMed Google Scholar
Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science309, 1387–1390 (2005). ArticleCASPubMed Google Scholar
Karlin, S. & Burge, C. Dinucleotide relative abundance extremes: a genomic signature. Trends Genet.11, 283–290 (1995). ArticleCASPubMed Google Scholar
Karlin, S. & Mrazek, J. Compositional differences within and between eukaryotic genomes. Proc. Natl. Acad. Sci. USA94, 10227–10232 (1997). ArticleCASPubMedPubMed Central Google Scholar
Deschavanne, P.J., Giron, A., Vilain, J., Fagot, G. & Fertil, B. Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol. Biol. Evol.16, 1391–1399 (1999). ArticleCASPubMed Google Scholar
Nakashima, H., Ota, M., Nishikawa, K. & Ooi, T. Genes from nine genomes are separated into their organisms in the dinucleotide composition space. DNA Res.5, 251–259 (1998). ArticleCASPubMed Google Scholar
Sandberg, R. et al. Capturing whole-genome characteristics in short sequences using a naive Bayesian classifier. Genome Res.11, 1404–1409 (2001). ArticleCASPubMedPubMed Central Google Scholar
Abe, T. et al. A novel bioinformatic strategy for unveiling hidden genome signatures of eukaryotes: self-organizing map of oligonucleotide frequency. Genome Inform. Ser. Workshop Genome Inform.13, 12–20 (2002). CAS Google Scholar
Pride, D.T., Meinersmann, R.J., Wassenaar, T.M. & Blaser, M.J. Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Res.13, 145–158 (2003). ArticleCASPubMedPubMed Central Google Scholar
Abe, T., Sugawara, H., Kinouchi, M., Kanaya, S. & Ikemura, T. Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples. DNA Res.12, 281–290 (2005). ArticleCASPubMed Google Scholar
Sharp, P.M., Bailes, E., Grocock, R.J., Peden, J.F. & Sockett, R.E. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res.33, 1141–1153 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lynn, D.J., Singer, G.A. & Hickey, D.A. Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res.30, 4272–4277 (2002). ArticleCASPubMedPubMed Central Google Scholar
Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I. & Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct1, 7 (2006). ArticlePubMedPubMed Central Google Scholar
DeLong, E.F. Microbial community genomics in the ocean. Nat. Rev. Microbiol.3, 459–469 (2005). ArticleCASPubMed Google Scholar
Kalyuzhnaya, M.G. et al. Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations. Appl. Environ. Microbiol.72, 4293–4301 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhang, K. et al. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol.24, 680–686 (2006). ArticleCASPubMed Google Scholar
Campbell, A., Mrazek, J. & Karlin, S. Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc. Natl. Acad. Sci. USA96, 9184–9189 (1999). ArticleCASPubMedPubMed Central Google Scholar
McHardy, A.C. Gene finding and the evaluation of synonymous codon usage features in microbial genomes.. Thesis, Bielefeld Univ., (2004). Google Scholar
Nelson, K.E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature399, 323–329 (1999). ArticleCASPubMed Google Scholar
Tsirigos, A. & Rigoutsos, I. A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res.33, 922–933 (2005). ArticleCASPubMedPubMed Central Google Scholar
Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res.33, 5691–5702 (2005). ArticleCASPubMedPubMed Central Google Scholar