A subset of octopaminergic neurons are important for Drosophila aggression (original) (raw)

References

  1. Darwin, C. The Descent of Man and Selection in Relation to Sex (John Murray, London, England, 1871).
    Book Google Scholar
  2. Lorenz, K.Z. On Aggression (Harcourt, Brace and World, New York, 1963).
    Google Scholar
  3. Scott, J.P. Genetic differences in the social behavior of inbred strains of mice. J. Hered. 33, 11–15 (1942).
    Article Google Scholar
  4. Brunner, H.G., Nelen, M., Breakefield, X.O., Ropers, H.H. & van Oost, B.A. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262, 578–580 (1993).
    Article CAS Google Scholar
  5. Sturtevant, A.H. Experiments on sex recognition and the problem of sexual selection in Drosophila. Anim. Behav. 5, 351–366 (1915).
    Article Google Scholar
  6. Jacobs, M.E. Influence of light on mating of Drosophila melanogaster. Ecology 41, 182–188 (1960).
    Article Google Scholar
  7. Dow, M.A. & von Schilcher, F. Aggression and mating success in Drosophila melanogaster. Nature 254, 511–512 (1975).
    Article CAS Google Scholar
  8. Jacobs, M.E. Influence of β-alanine on mating and territorialism in Drosophila melanogaster. Behav. Genet. 8, 487–502 (1978).
    Article CAS Google Scholar
  9. Hoffmann, A.A. A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans. Anim. Behav. 35, 807–818 (1987).
    Article Google Scholar
  10. Hoffmann, A.A. Territorial encounters between Drosophila males of different sizes. Anim. Behav. 35, 1899–1901 (1987).
    Article Google Scholar
  11. Hoffmann, A.A. Geographic variation in the territorial success of Drosophila melanogaster males. Behav. Genet. 19, 241–255 (1989).
    Article CAS Google Scholar
  12. Hoffmann, A.A. The influence of age and experience with conspecifics on territorial behaviour in Drosophila melanogaster. J. Insect Behav. 3, 1–12 (1990).
    Article Google Scholar
  13. Hoffmann, A.A. & Cacoyianni, Z. Selection for territoriality in Drosophila melanogaster: correlated responses in mating success and other fitness components. Anim. Behav. 38, 23–34 (1989).
    Article Google Scholar
  14. Hoffmann, A.A. & Cacoyianni, Z. Territoriality in Drosophila melanogaster as a conditional strategy. Anim. Behav. 40, 526–537 (1990).
    Article Google Scholar
  15. Ueda, A. & Kidokoro, Y. Aggressive behaviours of female Drosophila melanogaster are influenced by their social experience and food resources. Physiol. Entomol. 27, 21–28 (2002).
    Article Google Scholar
  16. Nilsen, S.P., Chan, Y.B., Huber, R. & Kravitz, E.A. Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 101, 12342–12347 (2004).
    Article CAS Google Scholar
  17. Vrontou, E., Nilsen, S.P., Demir, E., Kravitz, E.A. & Dickson, B.J. fruitless regulates aggression and dominance in Drosophila. Nat. Neurosci. 9, 1469–1471 (2006).
    Article CAS Google Scholar
  18. Dierick, H.A. & Greenspan, R.J. Molecular analysis of flies selected for aggressive behavior. Nat. Genet. 38, 1023–1031 (2006).
    Article CAS Google Scholar
  19. Edwards, A.C., Rollmann, S.M., Morgan, T.J. & Mackay, T.F. Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genet. 2, e154 (2006).
    Article Google Scholar
  20. Dierick, H.A. & Greenspan, R.J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat. Genet. 39, 678–682 (2007).
    Article CAS Google Scholar
  21. Livingstone, M.S., Harris-Warrick, R.M. & Kravitz, E.A. Serotonin and octopamine produce opposite postures in lobsters. Science 208, 76–79 (1980).
    Article CAS Google Scholar
  22. Edwards, D.H. & Kravitz, E.A. Serotonin, social status and aggression. Curr. Opin. Neurobiol. 7, 812–819 (1997).
    Article CAS Google Scholar
  23. Stevenson, P.A., Hofmann, H.A., Schoch, K. & Schildberger, K. The fight and flight responses of crickets depleted of biogenic amines. J. Neurobiol. 43, 107–120 (2000).
    Article CAS Google Scholar
  24. Stevenson, P.A., Dyakonova, V., Rillich, J. & Schildberger, K. Octopamine and experience-dependent modulation of aggression in crickets. J. Neurosci. 25, 1431–1441 (2005).
    Article CAS Google Scholar
  25. Baier, A., Wittek, B. & Brembs, B. Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol. 205, 1233–1240 (2002).
    PubMed Google Scholar
  26. Certel, S.J., Savella, M.G., Schlegel, D.C. & Kravitz, E.A. Modulation of Drosophila male behavioral choice. Proc. Natl. Acad. Sci. USA 104, 4706–4711 (2007).
    Article CAS Google Scholar
  27. Hoyer, S.C. et al. Octopamine in male aggression of Drosophila. Curr. Biol. 18, 159–167 (2008).
    Article CAS Google Scholar
  28. Monastirioti, M. Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol. 264, 38–49 (2003).
    Article CAS Google Scholar
  29. Schwaerzel, M. et al. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 10495–10502 (2003).
    Article CAS Google Scholar
  30. Valzelli, L. Aggressive behavior induced by isolation. in Aggressive Behavior (Eds. Garattini, S. and Sigg, E.B.) 70–76 (Wiley, New York, 1969).
    Google Scholar
  31. Wang, L., Heiko Dankert, H., Perona, P. & Anderson, D.J. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc. Natl. Acad. Sci. USA 105, 5657–5663 (2008).
    Article CAS Google Scholar
  32. Chen, S., Lee, A.Y., Bowens, N.M., Huber, R. & Kravitz, E.A. Fighting fruit flies: a model system for the study of aggression. Proc. Natl. Acad. Sci. USA 99, 5664–5668 (2002).
    Article CAS Google Scholar
  33. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).
    Article CAS Google Scholar
  34. Villella, A. et al. Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics 147, 1107–1130 (1997).
    CAS PubMed PubMed Central Google Scholar
  35. Luan, H. et al. Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J. Neurosci. 26, 573–584 (2006).
    Article CAS Google Scholar
  36. Cole, S.H. et al. Two functional, but noncomplementing, Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem. 280, 14948–14955 (2005).
    Article CAS Google Scholar
  37. Kitamoto, T. Conditional disruption of synaptic transmission induces male-male courtship behavior in Drosophila. Proc. Natl. Acad. Sci. USA 99, 13232–13237 (2002).
    Article CAS Google Scholar
  38. Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P.J. Waking experience affects sleep need in Drosophila. Science 313, 1775–1781 (2006).
    Article CAS Google Scholar
  39. Kravitz, E.A. Hormonal control of behavior: amines and the biasing of behavioural output in lobsters. Science 241, 1775–1781 (1988).
    Article CAS Google Scholar
  40. Adamo, S.A., Linn, C.E. & Hoy, R.R. The role of neurohormonal octopamine during 'fight or flight' behaviour in the field cricket Gryllus bimaculatus. J. Exp. Biol. 198, 1691–1700 (1995).
    CAS PubMed Google Scholar
  41. Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. Entomol. 50, 447–477 (2005).
    Article CAS Google Scholar
  42. Sallinen, J., Haapalinna, A., Viitamaa, T., Kobilka, B.K. & Scheinin, M. Adrenergic α2C-receptors modulate the acoustic startle reflex, prepulse inhibition and aggression in mice. J. Neurosci. 18, 3035–3042 (1998).
    Article CAS Google Scholar
  43. Marino, M.D., Bourdelat-Parks, B.N., Cameron Liles, L. & Weinshenker, D. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav. Brain Res. 161, 197–203 (2005).
    Article CAS Google Scholar
  44. Bray, S. & Amrein, H. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39, 1019–1029 (2003).
    Article CAS Google Scholar
  45. Svetec, N. & Ferveur, J.F. Social experience and pheromonal perception can change male-male interactions in Drosophila melanogaster. J. Exp. Biol. 208, 891–898 (2005).
    Article Google Scholar
  46. Kulkarni, S.J. & Hall, J.C. Behavioral and cytogenetic analysis of the cacophony courtship song mutant and interacting genetic variants in Drosophila melanogaster. Genetics 115, 461–475 (1987).
    CAS PubMed PubMed Central Google Scholar
  47. Anholt, R.R., Lyman, R.F. & Mackay, T.F. Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster. Genetics 143, 293–301 (1996).
    CAS PubMed PubMed Central Google Scholar

Download references