Buzsáki, G. & Eidelberg, E. Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res.230, 346–350 (1981). ArticlePubMed Google Scholar
Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science293, 1159–1163 (2001). ArticleCASPubMed Google Scholar
Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci.8, 45–56 (2007). ArticleCASPubMed Google Scholar
de Almeida, L., Idiart, M. & Lisman, J.E. A second function of gamma frequency oscillations: an E%-max winner-take-all mechanism selects which cells fire. J. Neurosci.29, 7497–7503 (2009). ArticleCASPubMedPubMed Central Google Scholar
Miles, R. Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. J. Physiol. (Lond.)428, 61–77 (1990). ArticleCAS Google Scholar
Nörenberg, A., Hu, H., Vida, I., Bartos, M. & Jonas, P. Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc. Natl. Acad. Sci. USA107, 894–899 (2010). ArticlePubMed Google Scholar
Hille, B. Ion Channels of Excitable Membrane (Sinauer, Sunderland, Massachusetts, 2001).
Debanne, D., Campanac, E., Bialowas, A., Carlier, E. & Alcaraz, G. Axon physiology. Physiol. Rev.91, 555–602 (2011). ArticleCASPubMed Google Scholar
Hu, H., Martina, M. & Jonas, P. Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science327, 52–58 (2010). ArticleCASPubMed Google Scholar
Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D.A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature441, 761–765 (2006). ArticleCASPubMed Google Scholar
Halasy, K. & Somogyi, P. Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci.5, 411–429 (1993). ArticleCASPubMed Google Scholar
Colbert, C.M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci.16, 6676–6686 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kim, S., Guzman, S.J., Hu, H. & Jonas, P. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nat. Neurosci.15, 600–606 (2012). ArticleCASPubMedPubMed Central Google Scholar
Baranauskas, G., David, Y. & Fleidervish, I.A. Spatial mismatch between the Na+ flux and spike initiation in axon initial segment. Proc. Natl. Acad. Sci. USA110, 4051–4056 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bean, B.P. The action potential in mammalian central neurons. Nat. Rev. Neurosci.8, 451–465 (2007). ArticleCASPubMed Google Scholar
Meeks, J.P. & Mennerick, S. Action potential initiation and propagation in CA3 pyramidal axons. J. Neurophysiol.97, 3460–3472 (2007). ArticlePubMed Google Scholar
Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Action potential initiation and propagation in hippocampal mossy fibre axons. J. Physiol. (Lond.)586, 1849–1857 (2008). ArticleCAS Google Scholar
Kole, M.H.P. et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci.11, 178–186 (2008). ArticleCASPubMed Google Scholar
Mainen, Z.F., Joerges, J., Huguenard, J.R. & Sejnowski, T.J. A model of spike initiation in neocortical pyramidal neurons. Neuron15, 1427–1439 (1995). ArticleCASPubMed Google Scholar
Hodgkin, A.L. & Huxley, A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.)116, 449–472 (1952). ArticleCAS Google Scholar
Goldman, L. & Schauf, C.L. Quantitative description of sodium and potassium currents and computed action potentials in Myxicola giant axons. J. Gen. Physiol.61, 361–384 (1973). ArticleCASPubMedPubMed Central Google Scholar
Sigworth, F.J. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. (Lond.)307, 97–129 (1980). ArticleCAS Google Scholar
Hu, W. et al. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat. Neurosci.12, 996–1002 (2009). ArticleCASPubMed Google Scholar
Fleidervish, I.A., Lasser-Ross, N., Gutnick, M.J. & Ross, W.N. Na+ imaging reveals little difference in action potential–evoked Na+ influx between axon and soma. Nat. Neurosci.13, 852–860 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schmidt-Hieber, C. & Bischofberger, J. Fast sodium channel gating supports localized and efficient axonal action potential initiation. J. Neurosci.30, 10233–10242 (2010). ArticleCASPubMedPubMed Central Google Scholar
Boiko, T. et al. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J. Neurosci.23, 2306–2313 (2003). ArticleCASPubMedPubMed Central Google Scholar
Carter, B.C. & Bean, B.P. Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron64, 898–909 (2009). ArticleCASPubMedPubMed Central Google Scholar
Alle, H., Roth, A. & Geiger, J.R.P. Energy-efficient action potentials in hippocampal mossy fibers. Science325, 1405–1408 (2009). ArticleCASPubMed Google Scholar
Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952). ArticleCAS Google Scholar
Wang, X.J. & Buzsáki, G. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci.16, 6402–6413 (1996). ArticleCASPubMedPubMed Central Google Scholar
Rudy, B. & McBain, C.J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci.24, 517–526 (2001). ArticleCASPubMed Google Scholar
Madeja, M. Do neurons have a reserve of sodium channels for the generation of action potentials? A study on acutely isolated CA1 neurons from the guinea-pig hippocampus. Eur. J. Neurosci.12, 1–7 (2000). ArticleCASPubMed Google Scholar
Debanne, D., Guérineau, N.C., Gähwiler, B.H. & Thompson, S.M. Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus. Nature389, 286–289 (1997). ArticleCASPubMed Google Scholar
Soleng, A.F., Chiu, K. & Raastad, M. Unmyelinated axons in the rat hippocampus hyperpolarize and activate an H current when spike frequency exceeds 1 Hz. J. Physiol. (Lond.)552, 459–470 (2003). ArticleCAS Google Scholar
Meeks, J.P. & Mennerick, S. Selective effects of potassium elevations on glutamate signaling and action potential conduction in hippocampus. J. Neurosci.24, 197–206 (2004). ArticleCASPubMedPubMed Central Google Scholar
Moore, J.W., Stockbridge, N. & Westerfield, M. On the site of impulse initiation in a neurone. J. Physiol. (Lond.)336, 301–311 (1983). ArticleCAS Google Scholar
Colbert, C.M. & Pan, E. Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nat. Neurosci.5, 533–538 (2002). ArticleCASPubMed Google Scholar
Huxley, A.F. & Stämpfli, R. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.)108, 315–339 (1949). Article Google Scholar
Engel, D. & Jonas, P. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron45, 405–417 (2005). ArticleCASPubMed Google Scholar
Martina, M., Schultz, J.H., Ehmke, H., Monyer, H. & Jonas, P. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J. Neurosci.18, 8111–8125 (1998). ArticleCASPubMedPubMed Central Google Scholar
Okaty, B.W., Miller, M.N., Sugino, K., Hempel, C.M. & Nelson, S.B. Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J. Neurosci.29, 7040–7052 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bartos, M. et al. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. USA99, 13222–13227 (2002). ArticleCASPubMedPubMed Central Google Scholar
Maex, R. & De Schutter, E. Resonant synchronization in heterogeneous networks of inhibitory neurons. J. Neurosci.23, 10503–10514 (2003). ArticleCASPubMedPubMed Central Google Scholar
Traub, R.D., Whittington, M.A., Stanford, I.M. & Jefferys, J.G.R. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature383, 621–624 (1996). ArticleCASPubMed Google Scholar
Bischofberger, J., Engel, D., Li, L., Geiger, J.R.P. & Jonas, P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc.1, 2075–2081 (2006). ArticleCASPubMed Google Scholar
Nevian, T., Larkum, M.E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci.10, 206–214 (2007). ArticleCASPubMed Google Scholar
Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J. Neurosci.20, 5594–5607 (2000). ArticleCASPubMedPubMed Central Google Scholar
Eggermann, E. & Jonas, P. How the “slow” Ca2+ buffer parvalbumin affects transmitter release in nanodomain coupling regimes at GABAergic synapses. Nat. Neurosci.15, 20–22 (2012). ArticleCAS Google Scholar
Kim, J.H., Renden, R. & von Gersdorff, H. Dysmyelination of auditory afferent axons increases the jitter of action potential timing during high-frequency firing. J. Neurosci.33, 9402–9407 (2013). ArticleCASPubMedPubMed Central Google Scholar
McGee, A.W., Yang, Y., Fischer, Q.S., Daw, N.W. & Strittmatter, S.M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science309, 2222–2226 (2005). ArticleCASPubMedPubMed Central Google Scholar
Martina, M. & Jonas, P. Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. J. Physiol. (Lond.)505, 593–603 (1997). ArticleCAS Google Scholar
Oxford, G.S. Some kinetic and steady-state properties of sodium channels after removal of inactivation. J. Gen. Physiol.77, 1–22 (1981). ArticleCASPubMed Google Scholar
Sakmann, B. & Neher, E. Geometric parameters of pipettes and membrane patches. in Single-Channel Recording, 2nd edn (eds. Sakmann, B. & Neher, E.) 637–650 (Plenum Press, New York/London, 1995).
Horn, R. Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophys. J.51, 255–263 (1987). ArticleCASPubMedPubMed Central Google Scholar
Carnevale, N.T. & Hines, M.L. The Neuron Book (Cambridge University Press, Cambridge, 2006).
Hodgkin, A. The optimum density of sodium channels in an unmyelinated nerve. Phil. Trans. R. Soc. Lond. B270, 297–300 (1975). ArticleCAS Google Scholar
Aponte, Y., Lien, C.C., Reisinger, E. & Jonas, P. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J. Physiol. (Lond.)574, 229–243 (2006). ArticleCAS Google Scholar