Excessive cocaine use results from decreased phasic dopamine signaling in the striatum (original) (raw)
Everitt, B.J. & Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci.8, 1481–1489 (2005). ArticleCASPubMed Google Scholar
Di Chiara, G. & Bassareo, V. Reward system and addiction: what dopamine does and doesn't do. Curr. Opin. Pharmacol.7, 69–76 (2007). ArticleCASPubMed Google Scholar
Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res.137, 75–114 (2002). ArticleCASPubMed Google Scholar
Ito, R., Dalley, J.W., Howes, S.R., Robbins, T.W. & Everitt, B.J. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci.20, 7489–7495 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ito, R., Dalley, J.W., Robbins, T.W. & Everitt, B.J. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci.22, 6247–6253 (2002). ArticleCASPubMedPubMed Central Google Scholar
Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA85, 5274–5278 (1988). ArticleCASPubMedPubMed Central Google Scholar
Wise, R.A. & Bozarth, M.A. A psychomotor stimulant theory of addiction. Psychol. Rev.94, 469–492 (1987). ArticleCASPubMed Google Scholar
Wise, R.A. et al. Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology (Berl.)120, 10–20 (1995). ArticleCAS Google Scholar
Stuber, G.D., Roitman, M.F., Phillips, P.E.M., Carelli, R.M. & Wightman, R.M. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology30, 853–863 (2005). ArticleCASPubMed Google Scholar
Stuber, G.D., Wightman, R.M. & Carelli, R.M. Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron46, 661–669 (2005). ArticleCASPubMed Google Scholar
Owesson-White, C.A. et al. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur. J. Neurosci.30, 1117–1127 (2009). ArticlePubMedPubMed Central Google Scholar
Willuhn, I., Burgeno, L.M., Everitt, B.J. & Phillips, P.E.M. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc. Natl. Acad. Sci. USA109, 20703–20708 (2012). ArticleCASPubMedPubMed Central Google Scholar
White, N.M. Addictive drugs as reinforcers: multiple partial actions on memory systems. Addiction91, 921–949, discussion 951–965 (1996). ArticleCASPubMed Google Scholar
Berke, J.D. & Hyman, S.E. Addiction, dopamine, and the molecular mechanisms of memory. Neuron25, 515–532 (2000). ArticleCASPubMed Google Scholar
Kalivas, P.W. & Volkow, N.D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry162, 1403–1413 (2005). ArticlePubMed Google Scholar
Porrino, L.J., Smith, H.R., Nader, M.A. & Beveridge, T.J. The effects of cocaine: a shifting target over the course of addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry31, 1593–1600 (2007). ArticleCASPubMedPubMed Central Google Scholar
Deroche-Gamonet, V., Belin, D. & Piazza, P.V. Evidence for addiction-like behavior in the rat. Science305, 1014–1017 (2004). ArticleCASPubMed Google Scholar
Vanderschuren, L.J. & Everitt, B.J. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science305, 1017–1019 (2004). ArticleCASPubMed Google Scholar
Ahmed, S.H. & Koob, G.F. Transition from moderate to excessive drug intake: change in hedonic set point. Science282, 298–300 (1998). ArticleCASPubMed Google Scholar
Jonkman, S., Pelloux, Y. & Everitt, B.J. Drug intake is sufficient, but conditioning is not necessary for the emergence of compulsive cocaine seeking after extended self-administration. Neuropsychopharmacology37, 1612–1619 (2012). ArticleCASPubMedPubMed Central Google Scholar
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn. text revision (American Psychiatric Association, 2000).
Zernig, G. et al. Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests. Pharmacology80, 65–119 (2007). ArticleCASPubMed Google Scholar
Clark, J.J. et al. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods7, 126–129 (2010). ArticleCASPubMed Google Scholar
Pan, H.T., Menacherry, S. & Justice, J.B. Jr. Differences in the pharmacokinetics of cocaine in naive and cocaine-experienced rats. J. Neurochem.56, 1299–1306 (1991). ArticleCASPubMed Google Scholar
Ahmed, S.H., Lin, D., Koob, G.F. & Parsons, L.H. Escalation of cocaine self-administration does not depend on altered cocaine-induced nucleus accumbens dopamine levels. J. Neurochem.86, 102–113 (2003). ArticleCASPubMed Google Scholar
De Wit, H. & Wise, R.A. Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can. J. Psychol.31, 195–203 (1977). ArticleCASPubMed Google Scholar
Ettenberg, A., Pettit, H.O., Bloom, F.E. & Koob, G.F. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology (Berl.)78, 204–209 (1982). ArticleCAS Google Scholar
Robledo, P., Maldonado-Lopez, R. & Koob, G.F. Role of dopamine receptors in the nucleus accumbens in the rewarding properties of cocaine. Ann. NY Acad. Sci.654, 509–512 (1992). ArticleCASPubMed Google Scholar
Wightman, R.M. et al. Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience25, 513–523 (1988). ArticleCASPubMed Google Scholar
Bradberry, C.W. Acute and chronic dopamine dynamics in a nonhuman primate model of recreational cocaine use. J. Neurosci.20, 7109–7115 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kirkland Henry, P., Davis, M. & Howell, L.L. Effects of cocaine self-administration history under limited and extended access conditions on in vivo striatal dopamine neurochemistry and acoustic startle in rhesus monkeys. Psychopharmacology (Berl.)205, 237–247 (2009). ArticleCAS Google Scholar
Mateo, Y., Lack, C.M., Morgan, D., Roberts, D.C. & Jones, S.R. Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self-administration and deprivation. Neuropsychopharmacology30, 1455–1463 (2005). ArticleCASPubMed Google Scholar
Ferris, M.J. et al. Cocaine self-administration produces pharmacodynamic tolerance: differential effects on the potency of dopamine transporter blockers, releasers, and methylphenidate. Neuropsychopharmacology37, 1708–1716 (2012). ArticleCASPubMedPubMed Central Google Scholar
Calipari, E.S. et al. Methylphenidate and cocaine self-administration produce distinct dopamine terminal alterations. Addict. Biol.19, 145–155 (2014). ArticleCASPubMed Google Scholar
Calipari, E.S., Ferris, M.J., Zimmer, B.A., Roberts, D.C. & Jones, S.R. Temporal pattern of cocaine intake determines tolerance vs sensitization of cocaine effects at the dopamine transporter. Neuropsychopharmacology38, 2385–2392 (2013). ArticleCASPubMedPubMed Central Google Scholar
Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science275, 1593–1599 (1997). ArticleCASPubMed Google Scholar
Clark, J.J., Collins, A.L., Sanford, C.A. & Phillips, P.E.M. Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training. J. Neurosci.33, 3526–3532 (2013). ArticleCASPubMedPubMed Central Google Scholar
Robinson, T.E. & Berridge, K.C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev.18, 247–291 (1993). ArticleCASPubMed Google Scholar
Ferrario, C.R. et al. Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol. Psychiatry58, 751–759 (2005). ArticleCASPubMed Google Scholar
Keramati, M. & Gutkin, B. Imbalanced decision hierarchy in addicts emerging from drug-hijacked dopamine spiraling circuit. PLoS ONE8, e61489 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dackis, C.A. & Gold, M.S. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci. Biobehav. Rev.9, 469–477 (1985). ArticleCASPubMed Google Scholar
Lynch, W.J. et al. A paradigm to investigate the regulation of cocaine self-administration in human cocaine users: a randomized trial. Psychopharmacology (Berl.)185, 306–314 (2006). ArticleCAS Google Scholar
Pickens, R. & Thompson, T. Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size. J. Pharmacol. Exp. Ther.161, 122–129 (1968). CASPubMed Google Scholar
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, 1998).
Phillips, P.E.M. & Wightman, R.M. Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. Trends Analyt. Chem.22, 509–514 (2003). ArticleCAS Google Scholar
Wright, S.P. Adjusted _P_-Values for simultaneous inference. Biometrics48, 1005–1013 (1992). Article Google Scholar