Basal forebrain circuit for sleep-wake control (original) (raw)

References

  1. Siegel, J.M. Sleep viewed as a state of adaptive inactivity. Nat. Rev. Neurosci. 10, 747–753 (2009).
    CAS PubMed PubMed Central Google Scholar
  2. Von Economo, C. Sleep as a problem of localization. J. Nerv. Ment. Dis. 71, 249–259 (1930).
    Google Scholar
  3. Nauta, W.J. Hypothalamic regulation of sleep in rats; an experimental study. J. Neurophysiol. 9, 285–316 (1946).
    CAS PubMed Google Scholar
  4. Moruzzi, G. & Magoun, H.W. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1, 455–473 (1949).
    CAS PubMed Google Scholar
  5. Saper, C.B., Fuller, P.M., Pedersen, N.P., Lu, J. & Scammell, T.E. Sleep state switching. Neuron 68, 1023–1042 (2010).
    CAS PubMed PubMed Central Google Scholar
  6. Jones, B.E. Neurobiology of waking and sleeping. Handb. Clin. Neurol. 98, 131–149 (2011).
    PubMed PubMed Central Google Scholar
  7. Brown, R.E., Basheer, R., McKenna, J.T., Strecker, R.E. & McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev. 92, 1087–1187 (2012).
    CAS PubMed Google Scholar
  8. Szymusiak, R. & McGinty, D. Sleep suppression following kainic acid-induced lesions of the basal forebrain. Exp. Neurol. 94, 598–614 (1986).
    CAS PubMed Google Scholar
  9. Szymusiak, R. & McGinty, D. Sleep-waking discharge of basal forebrain projection neurons in cats. Brain Res. Bull. 22, 423–430 (1989).
    CAS PubMed Google Scholar
  10. Alam, M.N., McGinty, D. & Szymusiak, R. Thermosensitive neurons of the diagonal band in rats: relation to wakefulness and non-rapid eye movement sleep. Brain Res. 752, 81–89 (1997).
    CAS PubMed Google Scholar
  11. Duque, A., Balatoni, B., Detari, L. & Zaborszky, L. EEG correlation of the discharge properties of identified neurons in the basal forebrain. J. Neurophysiol. 84, 1627–1635 (2000).
    CAS PubMed Google Scholar
  12. Lee, M.G., Manns, I.D., Alonso, A. & Jones, B.E. Sleep-wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J. Neurophysiol. 92, 1182–1198 (2004).
    PubMed Google Scholar
  13. Hassani, O.K., Lee, M.G., Henny, P. & Jones, B.E. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J. Neurosci. 29, 11828–11840 (2009).
    CAS PubMed PubMed Central Google Scholar
  14. Takahashi, K., Lin, J.S. & Sakai, K. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161, 269–292 (2009).
    CAS PubMed Google Scholar
  15. McGinty, D.J. & Sterman, M.B. Sleep suppression after basal forebrain lesions in the cat. Science 160, 1253–1255 (1968).
    CAS PubMed Google Scholar
  16. Buzsaki, G. et al. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8, 4007–4026 (1988).
    CAS PubMed PubMed Central Google Scholar
  17. Sallanon, M. et al. Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 32, 669–683 (1989).
    CAS PubMed Google Scholar
  18. Lin, J.S., Sakai, K., Vanni-Mercier, G. & Jouvet, M. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res. 479, 225–240 (1989).
    CAS PubMed Google Scholar
  19. Nishino, S. et al. Muscle atonia is triggered by cholinergic stimulation of the basal forebrain: implication for the pathophysiology of canine narcolepsy. J. Neurosci. 15, 4806–4814 (1995).
    CAS PubMed PubMed Central Google Scholar
  20. Kaur, S., Junek, A., Black, M.A. & Semba, K. Effects of ibotenate and 192IgG-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats. J. Neurosci. 28, 491–504 (2008).
    CAS PubMed PubMed Central Google Scholar
  21. Fuller, P.M., Sherman, D., Pedersen, N.P., Saper, C.B. & Lu, J. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 519, 933–956 (2011).
    PubMed PubMed Central Google Scholar
  22. Deurveilher, S. & Semba, K. Basal forebrain regulation of cortical activity and sleep-wake states: Roles of cholinergic and non-cholinergic neurons. Sleep Biol. Rhythms 9, 65–70 (2011).
    Google Scholar
  23. Jones, B.E. The organization of central cholinergic systems and their functional importance in sleep-waking states. Prog. Brain Res. 98, 61–71 (1993).
    CAS PubMed Google Scholar
  24. Lee, M.G., Hassani, O.K., Alonso, A. & Jones, B.E. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J. Neurosci. 25, 4365–4369 (2005).
    CAS PubMed PubMed Central Google Scholar
  25. Everitt, B.J. & Robbins, T.W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).
    CAS PubMed Google Scholar
  26. Sarter, M., Hasselmo, M.E., Bruno, J.P. & Givens, B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Brain Res. Rev. 48, 98–111 (2005).
    CAS PubMed Google Scholar
  27. Pinto, L. et al. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16, 1857–1863 (2013).
    CAS PubMed PubMed Central Google Scholar
  28. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 1139–1152 (2014).
    CAS PubMed PubMed Central Google Scholar
  29. Eggermann, E., Kremer, Y., Crochet, S. & Petersen, C.C. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Reports 9, 1654–1660 (2014).
    CAS PubMed Google Scholar
  30. Zaborszky, L. & Duque, A. Local synaptic connections of basal forebrain neurons. Behav. Brain Res. 115, 143–158 (2000).
    CAS PubMed Google Scholar
  31. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).
    CAS PubMed Google Scholar
  32. Xu, X., Roby, K.D. & Callaway, E.M. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J. Comp. Neurol. 518, 389–404 (2010).
    PubMed PubMed Central Google Scholar
  33. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).
    CAS PubMed Google Scholar
  34. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).
    CAS PubMed PubMed Central Google Scholar
  35. Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2012).
    CAS Google Scholar
  36. Modirrousta, M., Mainville, L. & Jones, B.E. Gabaergic neurons with alpha2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience 129, 803–810 (2004).
    CAS PubMed Google Scholar
  37. Irmak, S.O. & de Lecea, L. Basal forebrain cholinergic modulation of sleep transitions. Sleep 37, 1941–1951 (2014).
    PubMed Google Scholar
  38. Han, Y. et al. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr. Biol. 24, 693–698 (2014).
    CAS PubMed Google Scholar
  39. Freund, T.F. & Meskenaite, V. Gamma-aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc. Natl. Acad. Sci. USA 89, 738–742 (1992).
    CAS PubMed PubMed Central Google Scholar
  40. Kim, T. et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc. Natl. Acad. Sci. USA 112, 3535–3540 (2015).
    CAS PubMed PubMed Central Google Scholar
  41. Steriade, M. & McCarley, R.W. Brain Control of Wakefulness and Sleep (Plenum Press, New York, 2005).
  42. Goard, M. & Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 12, 1444–1449 (2009).
    CAS PubMed PubMed Central Google Scholar
  43. Szymusiak, R., Gvilia, I. & McGinty, D. Hypothalamic control of sleep. Sleep Med. 8, 291–301 (2007).
    PubMed Google Scholar
  44. Sherin, J.E., Shiromani, P.J., McCarley, R.W. & Saper, C.B. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216–219 (1996).
    CAS PubMed Google Scholar
  45. Szymusiak, R., Alam, N., Steininger, T.L. & McGinty, D. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res. 803, 178–188 (1998).
    CAS PubMed Google Scholar
  46. Lu, J., Greco, M.A., Shiromani, P. & Saper, C.B. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci. 20, 3830–3842 (2000).
    CAS PubMed PubMed Central Google Scholar
  47. Sherin, J.E., Elmquist, J.K., Torrealba, F. & Saper, C.B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 18, 4705–4721 (1998).
    CAS PubMed PubMed Central Google Scholar
  48. Steininger, T.L., Gong, H., McGinty, D. & Szymusiak, R. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J. Comp. Neurol. 429, 638–653 (2001).
    CAS PubMed Google Scholar
  49. Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).
    CAS PubMed PubMed Central Google Scholar
  50. Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247–258 (1992).
    CAS PubMed Google Scholar
  51. Pfeffer, C.K., Xue, M., He, M., Huang, Z.J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).
    CAS PubMed PubMed Central Google Scholar
  52. Danik, M., Puma, C., Quirion, R. & Williams, S. Widely expressed transcripts for chemokine receptor CXCR1 in identified glutamatergic, gamma-aminobutyric acidergic, and cholinergic neurons and astrocytes of the rat brain: a single-cell reverse transcription-multiplex polymerase chain reaction study. J. Neurosci. Res. 74, 286–295 (2003).
    CAS PubMed Google Scholar
  53. Nordenankar, K. et al. Increased hippocampal excitability and impaired spatial memory function in mice lacking VGLUT2 selectively in neurons defined by tyrosine hydroxylase promoter activity. Brain Struct. Funct. 220, 2171–2190 (2015).
    CAS PubMed Google Scholar
  54. Weissbourd, B. et al. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83, 645–662 (2014).
    CAS PubMed PubMed Central Google Scholar
  55. Watakabe, A., Komatsu, Y., Ohsawa, S. & Yamamori, T. Fluorescent in situ hybridization technique for cell type identification and characterization in the central nervous system. Methods 52, 367–374 (2010).
    CAS PubMed Google Scholar

Download references