Adult mouse cortical cell taxonomy revealed by single cell transcriptomics (original) (raw)
Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature445, 168–176 (2007). CASPubMed Google Scholar
Hawrylycz, M.J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature489, 391–399 (2012). CASPubMedPubMed Central Google Scholar
DeFelipe, J. et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci.14, 202–216 (2013). CASPubMedPubMed Central Google Scholar
Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci.9, 99–107 (2006). CASPubMed Google Scholar
Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol.71, 45–61 (2011). PubMedPubMed Central Google Scholar
Sorensen, S.A. et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cereb. Cortex25, 433–449 (2015). PubMed Google Scholar
Greig, L.C., Woodworth, M.B., Galazo, M.J., Padmanabhan, H. & Macklis, J.D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci.14, 755–769 (2013). CASPubMed Google Scholar
Toledo-Rodriguez, M. et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb. Cortex14, 1310–1327 (2004). PubMed Google Scholar
Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci.9, 557–568 (2008). CASPubMed Google Scholar
Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci.28, 264–278 (2008). CASPubMedPubMed Central Google Scholar
Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci.34, 11929–11947 (2014). ArticleCASPubMedPubMed Central Google Scholar
Pollen, A.A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol.32, 1053–1058 (2014). CASPubMedPubMed Central Google Scholar
Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci.18, 145–153 (2015). CASPubMed Google Scholar
Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science347, 1138–1142 (2015). CASPubMed Google Scholar
Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell161, 1202–1214 (2015). CASPubMedPubMed Central Google Scholar
Glickfeld, L.L., Reid, R.C. & Andermann, M.L. A mouse model of higher visual cortical function. Curr. Opin. Neurobiol.24, 28–33 (2014). CASPubMed Google Scholar
Harris, J.A. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits8, 76 (2014). PubMedPubMed Central Google Scholar
Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron71, 995–1013 (2011). CASPubMedPubMed Central Google Scholar
Olsen, S.R., Bortone, D.S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature483, 47–52 (2012). CASPubMedPubMed Central Google Scholar
Gonchar, Y., Wang, Q. & Burkhalter, A.H. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanat.1, 3 (2008). PubMedPubMed Central Google Scholar
Xu, X., Roby, K.D. & Callaway, E.M. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J. Comp. Neurol.518, 389–404 (2010). PubMedPubMed Central Google Scholar
Pfeffer, C.K., Xue, M., He, M., Huang, Z.J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci.16, 1068–1076 (2013). CASPubMedPubMed Central Google Scholar
Xu, X., Roby, K.D. & Callaway, E.M. Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J. Comp. Neurol.499, 144–160 (2006). CASPubMed Google Scholar
Oliva, A.A. Jr., Jiang, M., Lam, T., Smith, K.L. & Swann, J.W. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci.20, 3354–3368 (2000). CASPubMedPubMed Central Google Scholar
Seress, L., Abrahám, H., Hajnal, A., Lin, H. & Totterdell, S. NOS-positive local circuit neurons are exclusively axo-dendritic cells both in the neo- and archi-cortex of the rat brain. Brain Res.1056, 183–190 (2005). CASPubMed Google Scholar
Lee, J.E. & Jeon, C.J. Immunocytochemical localization of nitric oxide synthase–containing neurons in mouse and rabbit visual cortex and co-localization with calcium-binding proteins. Mol. Cells19, 408–417 (2005). CASPubMed Google Scholar
Tomioka, R. et al. Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur. J. Neurosci.21, 1587–1600 (2005). PubMed Google Scholar
Gerashchenko, D. et al. Identification of a population of sleep-active cerebral cortex neurons. Proc. Natl. Acad. Sci. USA105, 10227–10232 (2008). CASPubMedPubMed Central Google Scholar
Taniguchi, H., Lu, J. & Huang, Z.J. The spatial and temporal origin of chandelier cells in mouse neocortex. Science339, 70–74 (2013). CASPubMed Google Scholar
Dehorter, N. et al. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science349, 1216–1220 (2015). CASPubMedPubMed Central Google Scholar
von Engelhardt, J., Eliava, M., Meyer, A.H., Rozov, A. & Monyer, H. Functional characterization of intrinsic cholinergic interneurons in the cortex. J. Neurosci.27, 5633–5642 (2007). CASPubMedPubMed Central Google Scholar
Molyneaux, B.J., Arlotta, P., Menezes, J.R. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci.8, 427–437 (2007). CASPubMed Google Scholar
Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell149, 483–496 (2012). CASPubMedPubMed Central Google Scholar
Sommer, B. et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science249, 1580–1585 (1990). CASPubMed Google Scholar
Vélez-Fort, M. et al. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron83, 1431–1443 (2014). PubMedPubMed Central Google Scholar
Bortone, D.S., Olsen, S.R. & Scanziani, M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron82, 474–485 (2014). CASPubMedPubMed Central Google Scholar
Kawaguchi, Y. Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J. Neurosci.15, 2638–2655 (1995). CASPubMedPubMed Central Google Scholar
Hestrin, S. & Armstrong, W.E. Morphology and physiology of cortical neurons in layer I. J. Neurosci.16, 5290–5300 (1996). CASPubMedPubMed Central Google Scholar
Povysheva, N.V. et al. Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. J. Neurophysiol.97, 1030–1039 (2007). CASPubMed Google Scholar
Chu, Z., Galarreta, M. & Hestrin, S. Synaptic interactions of late-spiking neocortical neurons in layer 1. J. Neurosci.23, 96–102 (2003). CASPubMedPubMed Central Google Scholar
Simon, A., Oláh, S., Molnár, G., Szabadics, J. & Tamás, G. Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J. Neurosci.25, 6278–6285 (2005). CASPubMedPubMed Central Google Scholar
Karayannis, T. et al. Slow GABA transient and receptor desensitization shape synaptic responses evoked by hippocampal neurogliaform cells. J. Neurosci.30, 9898–9909 (2010). CASPubMedPubMed Central Google Scholar
Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex7, 476–486 (1997). CASPubMed Google Scholar
Muralidhar, S., Wang, Y. & Markram, H. Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex. Front. Neuroanat.7, 52 (2013). PubMed Google Scholar
Herculano-Houzel, S., Watson, C. & Paxinos, G. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front. Neuroanat.7, 35 (2013). PubMedPubMed Central Google Scholar
DeFelipe, J. Cortical interneurons: from Cajal to 2001. Prog. Brain Res.136, 215–238 (2002). PubMed Google Scholar
Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science343, 776–779 (2014). CASPubMedPubMed Central Google Scholar
Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab.13, 195–204 (2011). CASPubMedPubMed Central Google Scholar
Gerfen, C.R., Paletzki, R. & Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron80, 1368–1383 (2013). CASPubMed Google Scholar
Franco, S.J. et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science337, 746–749 (2012). CASPubMedPubMed Central Google Scholar
Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron49, 191–203 (2006). CASPubMed Google Scholar
Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron85, 942–958 (2015). CASPubMedPubMed Central Google Scholar
Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol.3, e159 (2005). PubMedPubMed Central Google Scholar
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci.13, 133–140 (2010). CASPubMed Google Scholar
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron71, 142–154 (2011). CASPubMedPubMed Central Google Scholar
Tong, Q., Ye, C.P., Jones, J.E., Elmquist, J.K. & Lowell, B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci.11, 998–1000 (2008). CASPubMedPubMed Central Google Scholar
Raymond, C.S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One2, e162 (2007). PubMedPubMed Central Google Scholar
Sando, R. III et al. Inducible control of gene expression with destabilized Cre. Nat. Methods10, 1085–1088 (2013). CASPubMedPubMed Central Google Scholar
Hnasko, T.S. et al. Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proc. Natl. Acad. Sci. USA103, 8858–8863 (2006). CASPubMedPubMed Central Google Scholar
Harris, J.A., Oh, S.W. & Zeng, H. Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and cre driver mice. Curr. Protoc. Neurosci. Chapter 1, Unit 1.20.1–18 (2012).
Franklin, K.B.J.P.G. Mouse Brain in Stereotaxic Coordinates (Academic Press, 2008).
Hempel, C.M., Sugino, K. & Nelson, S.B. A manual method for the purification of fluorescently labeled neurons from the mammalian brain. Nat. Protoc.2, 2924–2929 (2007). CASPubMed Google Scholar
Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol.30, 777–782 (2012). PubMedPubMed Central Google Scholar
Shalek, A.K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature510, 363–369 (2014). CASPubMedPubMed Central Google Scholar
Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature509, 371–375 (2014). CASPubMedPubMed Central Google Scholar
Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12, 323 (2011). CASPubMedPubMed Central Google Scholar
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol.10, R25 (2009). PubMedPubMed Central Google Scholar
Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods10, 1093–1095 (2013). CASPubMed Google Scholar
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics9, 559 (2008). PubMedPubMed Central Google Scholar
Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43, e47 (2015). PubMedPubMed Central Google Scholar
Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods7, 1009–1015 (2010). CASPubMedPubMed Central Google Scholar
Thompson, C.L. et al. Genomic anatomy of the hippocampus. Neuron60, 1010–1021 (2008). CASPubMed Google Scholar
Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol.28, 348–353 (2010). CASPubMedPubMed Central Google Scholar
Hu, H., Cavendish, J.Z. & Agmon, A. Not all that glitters is gold: off-target recombination in the somatostatin-IRES-Cre mouse line labels a subset of fast-spiking interneurons. Front. Neural Circuits7, 195 (2013). PubMedPubMed Central Google Scholar
Rossier, J. et al. Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Mol. Psychiatry20, 154–161 (2015). CASPubMed Google Scholar
Nikkari, S.T., Järveläinen, H.T., Wight, T.N., Ferguson, M. & Clowes, A.W. Smooth muscle cell expression of extracellular matrix genes after arterial injury. Am. J. Pathol.144, 1348–1356 (1994). CASPubMedPubMed Central Google Scholar
Wickham, H. ggplot2:Elegant Graphics for Data Analysis. (Springer, 2009).