Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex (original) (raw)

References

  1. Roberts, E.B., Meredith, M.A. & Ramoa, A.S. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. J. Neurophysiol. 80, 1021–1032 (1998).
    Article CAS Google Scholar
  2. Daw, N.W. et al. Injection of MK-801 affects ocular dominance shifts more than visual activity. J. Neurophysiol. 81, 204–215 (1999).
    Article CAS Google Scholar
  3. Beaver, C.J., Ji, Q., Fischer, Q.S. & Daw, N.W. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex. Nat. Neurosci. 4, 159–163 (2001).
    Article CAS Google Scholar
  4. Taha, S., Hanover, J.L., Silva, A.J. & Stryker, M.P. Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity. Neuron 36, 483–491 (2002).
    Article CAS Google Scholar
  5. Di Cristo, G. et al. Requirement of ERK activation for visual cortical plasticity. Science 292, 2337–2340 (2001).
    Article CAS Google Scholar
  6. Mansuy, I.M. Calcineurin in memory and bidirectional plasticity. Biochem. Biophys. Res. Commun. 311, 1195–1208 (2003).
    Article CAS Google Scholar
  7. Winder, D.G. & Sweatt, J.D. Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat. Rev. Neurosci. 2, 461–474 (2001).
    Article CAS Google Scholar
  8. Klee, C.B., Crouch, T.H. & Krinks, M.H. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl. Acad. Sci. USA 76, 6270–6273 (1979).
    Article CAS Google Scholar
  9. Goto, S. et al. Cellular colocalization of calcium/calmodulin-dependent protein kinase II and calcineurin in the rat cerebral cortex and hippocampus. Neurosci. Lett. 149, 189–192 (1993).
    Article CAS Google Scholar
  10. Goto, S., Singer, W. & Gu, Q. Immunocytochemical localization of calcineurin in the adult and developing primary visual cortex of cats. Exp. Brain Res. 96, 377–386 (1993).
    Article CAS Google Scholar
  11. Lieberman, D.N. & Mody, I. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature 369, 235–239 (1994).
    Article CAS Google Scholar
  12. Tong, G., Shepherd, D. & Jahr, C.E. Synaptic desensitization of NMDA receptors by calcineurin. Science 267, 1510–1512 (1995).
    Article CAS Google Scholar
  13. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).
    Article CAS Google Scholar
  14. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).
    Article CAS Google Scholar
  15. Genoux, D. et al. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418, 970–975 (2002).
    Article CAS Google Scholar
  16. Morishita, W. et al. Regulation of synaptic strength by protein phosphatase 1. Neuron 32, 1133–1148 (2001).
    Article CAS Google Scholar
  17. Torii, N., Kamishita, T., Otsu, Y. & Tsumoto, T. An inhibitor for calcineurin, FK506, blocks induction of long-term depression in rat visual cortex. Neurosci. Lett. 185, 1–4 (1995).
    Article CAS Google Scholar
  18. Funauchi, M., Haruta, H. & Tsumoto, T. Effects of an inhibitor for calcium/calmodulin-dependent protein phosphatase, calcineurin, on induction of long-term potentiation in rat visual cortex. Neurosci. Res. 19, 269–278 (1994).
    Article CAS Google Scholar
  19. Mansuy, I.M., Mayford, M., Jacob, B., Kandel, E.R. & Bach, M.E. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92, 39–49 (1998).
    Article CAS Google Scholar
  20. Antoni, F.A. et al. Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory. J. Neurosci. 18, 9650–9661 (1998).
    Article CAS Google Scholar
  21. Coghlan, V.M. et al. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111 (1995).
    Article CAS Google Scholar
  22. Oliveria, S.F., Gomez, L.L. & Dell'Acqua, M.L. Imaging kinase–AKAP79–phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J. Cell Biol. 160, 101–112 (2003).
    Article CAS Google Scholar
  23. Rao, Y. et al. Reduced ocular dominance plasticity and long-term potentiation in developing visual cortex of protein kinase A RIIα mutant mice. Eur. J. Neurosci. 20, 837–842 (2004).
    Article Google Scholar
  24. Fischer, Q.S. et al. Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity. J. Neurosci. 24, 9049–9058 (2004).
    Article CAS Google Scholar
  25. Goto, S. et al. Cellular localization of type II Ca2+/calmodulin-dependent protein kinase in the rat basal ganglia and intrastriatal grafts derived from fetal striatal primordia, in comparison with that of Ca2+/calmodulin-regulated protein phosphatase, calcineurin. Neuroscience 62, 695–705 (1994).
    Article CAS Google Scholar
  26. Bito, H., Deisseroth, K. & Tsien, R.W. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214 (1996).
    Article CAS Google Scholar
  27. Pham, T.A., Impey, S., Storm, D.R. & Stryker, M.P. CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron 22, 63–72 (1999).
    Article CAS Google Scholar
  28. Mower, A.F., Liao, D.S., Nestler, E.J., Neve, R.L. & Ramoa, A.S. cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity. J. Neurosci. 22, 2237–2245 (2002).
    Article CAS Google Scholar
  29. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).
    Article CAS Google Scholar
  30. Polli, J.W., Billingsley, M.L. & Kincaid, R.L. Expression of the calmodulin-dependent protein phosphatase, calcineurin, in rat brain: developmental patterns and the role of nigrostriatal innervation. Brain Res. Dev. Brain Res. 63, 105–119 (1991).
    Article CAS Google Scholar
  31. Robertson, A., Perea, J., Tolmachova, T., Thomas, P.K. & Huxley, C. Effects of mouse strain, position of integration and tetracycline analogue on the tetracycline conditional system in transgenic mice. Gene 282, 65–74 (2002).
    Article CAS Google Scholar
  32. Paul, S., Nairn, A.C., Wang, P. & Lombroso, P.J. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 6, 34–42 (2003).
    Article CAS Google Scholar
  33. Giese, K.P., Fedorov, N.B., Filipkowski, R.K. & Silva, A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).
    Article CAS Google Scholar
  34. Cancedda, L. et al. Patterned vision causes CRE-mediated gene expression in the visual cortex through PKA and ERK. J. Neurosci. 23, 7012–7020 (2003).
    Article CAS Google Scholar
  35. Taha, S. & Stryker, M.P. Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis. Neuron 34, 425–436 (2002).
    Article CAS Google Scholar
  36. Groth, R.D., Dunbar, R.L. & Mermelstein, P.G. Calcineurin regulation of neuronal plasticity. Biochem. Biophys. Res. Commun. 311, 1159–1171 (2003).
    Article CAS Google Scholar
  37. Cameron, A.M. et al. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83, 463–472 (1995).
    Article CAS Google Scholar
  38. Iwai, Y., Fagiolini, M., Obata, K. & Hensch, T.K. Rapid critical period induction by tonic inhibition in visual cortex. J. Neurosci. 23, 6695–6702 (2003).
    Article CAS Google Scholar
  39. Fagiolini, M. et al. Specific GABAA circuits for visual cortical plasticity. Science 303, 1681–1683 (2004).
    Article CAS Google Scholar
  40. Berardi, N., Pizzorusso, T. & Maffei, L. Extracellular matrix and visual cortical plasticity: freeing the synapse. Neuron 44, 905–908 (2004).
    CAS PubMed Google Scholar
  41. Oray, S., Majewska, A. & Sur, M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44, 1021–1030 (2004).
    Article CAS Google Scholar
  42. Zhou, Q., Homma, K.J. & Poo, M.M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).
    Article CAS Google Scholar
  43. Lautermilch, N.J. & Spitzer, N.C. Regulation of calcineurin by growth cone calcium waves controls neurite extension. J. Neurosci. 20, 315–325 (2000).
    Article CAS Google Scholar
  44. Fansa, H. et al. Stimulation of Schwann cell proliferation and axonal regeneration by FK 506. Restor. Neurol. Neurosci. 16, 77–86 (2000).
    CAS PubMed Google Scholar
  45. Heynen, A.J. et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat. Neurosci. 6, 854–862 (2003).
    Article CAS Google Scholar
  46. Hensch, T.K. et al. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice. J. Neurosci. 18, 2108–2117 (1998).
    Article CAS Google Scholar
  47. Renger, J.J. et al. Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Proc. Natl. Acad. Sci. USA 99, 1041–1046 (2002).
    Article CAS Google Scholar
  48. Daw, N., Rao, Y., Wang, X.F., Fischer, Q. & Yang, Y. LTP and LTD vary with layer in rodent visual cortex. Vision Res. 44, 3377–3380 (2004).
    Article Google Scholar
  49. Sawtell, N.B. et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977–985 (2003).
    Article CAS Google Scholar
  50. Pham, T.A. et al. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB. Learn. Mem. 11, 738–747 (2004).
    Article Google Scholar

Download references