Pigment epithelium–derived factor is a niche signal for neural stem cell renewal (original) (raw)

References

  1. Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13, 543–550 (2003).
    Article CAS Google Scholar
  2. Palmer, T.D., Takahashi, J. & Gage, F.H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404 (1997).
    Article CAS Google Scholar
  3. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).
    Article CAS Google Scholar
  4. Morshead, C.M., Craig, C.G. & van der Kooy, D. In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125, 2251–2261 (1998).
    CAS Google Scholar
  5. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).
    Article CAS Google Scholar
  6. Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G. & Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).
    Article CAS Google Scholar
  7. Doetsch, F., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).
    Article CAS Google Scholar
  8. Ferron, S. et al. Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131, 4059–4070 (2004).
    Article CAS Google Scholar
  9. Palmer, T.D., Willhoite, A.R. & Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).
    Article CAS Google Scholar
  10. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).
    Article Google Scholar
  11. Leventhal, C., Rafii, S., Rafii, D., Shahar, A. & Goldman, S.A. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell. Neurosci. 13, 450–464 (1999).
    Article CAS Google Scholar
  12. Shingo, T., Sorokan, S.T., Shimazaki, T. & Weiss, S. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J. Neurosci. 21, 9733–9743 (2001).
    Article CAS Google Scholar
  13. Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950 (2002).
    Article CAS Google Scholar
  14. Louissaint, A., Jr., Rao, S., Leventhal, C. & Goldman, S.A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).
    Article CAS Google Scholar
  15. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).
    Article CAS Google Scholar
  16. Tombran-Tink, J., Chader, G.G. & Johnson, L.V. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp. Eye Res. 53, 411–414 (1991).
    Article CAS Google Scholar
  17. Steele, F.R., Chader, G.J., Johnson, L.V. & Tombran-Tink, J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc. Natl. Acad. Sci. USA 90, 1526–1530 (1993).
    Article CAS Google Scholar
  18. Becerra, S.P., Sagasti, A., Spinella, P. & Notario, V. Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop. J. Biol. Chem. 270, 25992–25999 (1995).
    Article CAS Google Scholar
  19. Aparicio, S., Sawant, S., Lara, N., Barnstable, C.J. & Tombran-Tink, J. Expression of angiogenesis factors in human umbilical vein endothelial cells and their regulation by PEDF. Biochem. Biophys. Res. Commun. 326, 387–394 (2005).
    Article CAS Google Scholar
  20. Kozaki, K. et al. Isolation, purification, and characterization of a collagen-associated serpin, caspin, produced by murine colon adenocarcinoma cells. J. Biol. Chem. 273, 15125–15130 (1998).
    Article CAS Google Scholar
  21. Meyer, C., Notari, L. & Becerra, S.P. Mapping the type I collagen-binding site on pigment epithelium-derived factor. Implications for its antiangiogenic activity. J. Biol. Chem. 277, 45400–45407 (2002).
    Article CAS Google Scholar
  22. Bilak, M.M. et al. Identification of the neuroprotective molecular region of pigment epithelium-derived factor and its binding sites on motor neurons. J. Neurosci. 22, 9378–9386 (2002).
    Article CAS Google Scholar
  23. Araki, T., Taniwaki, T., Becerra, S.P., Chader, G.J. & Schwartz, J.P. Pigment epithelium-derived factor (PEDF) differentially protects immature but not mature cerebellar granule cells against apoptotic cell death. J. Neurosci. Res. 53, 7–15 (1998).
    Article CAS Google Scholar
  24. Dawson, D.W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248 (1999).
    Article CAS Google Scholar
  25. Sugita, Y., Becerra, S.P., Chader, G.J. & Schwartz, J.P. Pigment epithelium-derived factor (PEDF) has direct effects on the metabolism and proliferation of microglia and indirect effects on astrocytes. J. Neurosci. Res. 49, 710–718.
  26. Pignolo, R.J., Francis, M.K., Rotenberg, M.O. & Cristofalo, V.J. Putative role for EPC-1/PEDF in the G0 growth arrest of human diploid fibroblasts. J. Cell. Physiol. 195, 12–20 (2003).
    Article CAS Google Scholar
  27. Tombran-Tink, J. & Barnstable, C.J. PEDF: a multifaceted neurotrophic factor. Nat. Rev. Neurosci. 4, 628–636 (2003).
    Article CAS Google Scholar
  28. Ortego, J., Escribano, J., Becerra, S.P. & Coca-Prados, M. Gene expression of the neurotrophic pigment epithelium-derived factor in the human ciliary epithelium. Synthesis and secretion into the aqueous humor. Invest. Ophthalmol. Vis. Sci. 37, 2759–2767 (1996).
    CAS PubMed Google Scholar
  29. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).
    Article CAS Google Scholar
  30. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).
    Article CAS Google Scholar
  31. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).
    Article CAS Google Scholar
  32. Parras, C.M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).
    Article CAS Google Scholar
  33. Bylund, M., Andersson, E., Novitch, B.G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat. Neurosci. 6, 1162–1168 (2003).
    Article CAS Google Scholar
  34. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).
    Article CAS Google Scholar
  35. Ferri, A.L. et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819 (2004).
    Article CAS Google Scholar
  36. Alberdi, E., Aymerich, M.S. & Becerra, S.P. Binding of pigment epithelium-derived factor (PEDF) to retinoblastoma cells and cerebellar granule neurons. Evidence for a PEDF receptor. J. Biol. Chem. 274, 31605–31612 (1999).
    Article CAS Google Scholar
  37. Song, H., Stevens, C.F. & Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).
    Article CAS Google Scholar
  38. Lim, D.A. & Alvarez-Buylla, A. Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc. Natl. Acad. Sci. USA 96, 7526–7531 (1999).
    Article CAS Google Scholar
  39. Craig, C.G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).
    Article CAS Google Scholar
  40. Kuhn, H.G., Winkler, J., Kempermann, G., Thal, L.J. & Gage, F.H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).
    Article CAS Google Scholar
  41. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).
    Article CAS Google Scholar
  42. Zigova, T., Pencea, V., Wiegand, S.J. & Luskin, M.B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell. Neurosci. 11, 234–245 (1998).
    Article CAS Google Scholar
  43. Mercier, F., Kitasako, J.T. & Hatton, G.I. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J. Comp. Neurol. 451, 170–188 (2002).
    Article Google Scholar
  44. Garcion, E., Halilagic, A., Faissner, A. & ffrench-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423–3432 (2004).
    Article CAS Google Scholar
  45. Molofsky, A.V., Pardal, R. & Morrison, S.J. Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol. 16, 700–707 (2004).
    Article CAS Google Scholar
  46. Herrera, D.G., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann. Neurol. 46, 867–877 (1999).
    Article CAS Google Scholar

Download references