GTP-independent rapid and slow endocytosis at a central synapse (original) (raw)

References

  1. Fernandez-Alfonso, T. & Ryan, T.A. The efficiency of the synaptic vesicle cycle at central nervous system synapses. Trends Cell Biol. 16, 413–420 (2006).
    Article CAS Google Scholar
  2. Koenig, J.H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci. 9, 3844–3860 (1989).
    Article CAS Google Scholar
  3. Chen, M.S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351, 583–586 (1991).
    Article CAS Google Scholar
  4. van der Bliek, A.M. & Meyerowitz, E.M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411–414 (1991).
    Article CAS Google Scholar
  5. Damke, H., Baba, T., Warnock, D.E. & Schmid, S.L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).
    Article CAS Google Scholar
  6. Takei, K., McPherson, P.S., Schmid, S.L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-rS in nerve terminals. Nature 374, 186–190 (1995).
    Article CAS Google Scholar
  7. Sweitzer, S.M. & Hinshaw, J.E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).
    Article CAS Google Scholar
  8. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).
    Article CAS Google Scholar
  9. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).
    Article CAS Google Scholar
  10. Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259–263 (1997).
    Article CAS Google Scholar
  11. Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).
    Article CAS Google Scholar
  12. Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925 (1998).
    Article CAS Google Scholar
  13. Yamashita, T., Hige, T. & Takahashi, T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 307, 124–127 (2005).
    Article CAS Google Scholar
  14. Newton, A.J., Kirchhausen, T. & Murthy, V.N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 103, 17955–17960 (2006).
    Article CAS Google Scholar
  15. Jockusch, W.J., Praefcke, G.J., McMahon, H.T. & Lagnado, L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46, 869–878 (2005).
    Article CAS Google Scholar
  16. Artalejo, C.R., Elhamdani, A. & Palfrey, H.C. Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2–mediated slow endocytosis in chromaffin cells. Proc. Natl. Acad. Sci. USA 99, 6358–6363 (2002).
    Article CAS Google Scholar
  17. Artalejo, C.R., Henley, J.R., McNiven, M.A. & Palfrey, H.C. Rapic endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin, but not clathrin. Proc. Natl. Acad. Sci. USA 92, 8328–8332 (1995).
    Article CAS Google Scholar
  18. Dautry-Varsat, A. Clathrin-independent endocytosis. in Endocytosis (ed. Marsh, M.) 26–57 (Oxford University Press, Oxford, 2001).
    Google Scholar
  19. Damke, H., Baba, T., van der Bliek, A.M. & Schmid, S.L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995).
    Article CAS Google Scholar
  20. Kirkham, M. & Parton, R.G. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta 1746, 349–363 (2005).
    Article CAS Google Scholar
  21. Wu, W., Xu, J., Wu, X.S. & Wu, L.G. Activity-dependent acceleration of endocytosis at a central synapse. J. Neurosci. 25, 11676–11683 (2005).
    Article CAS Google Scholar
  22. Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).
    Article CAS Google Scholar
  23. Pang, Z.P., Sun, J., Rizo, J., Maximov, A. & Sudhof, T.C. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J. 25, 2039–2050 (2006).
    Article CAS Google Scholar
  24. De Camilli, P., Slepnev, V.I., Shupliakov, O. & Brodin, L. Synaptic vesicle endocytosis. in Synapses (eds. Cowan, W.M., Sudhof, T.C. & Stevens, C.F.) 217–274 (The Johns Hopkins University Press, Baltimore and London, 2001).
    Google Scholar
  25. Betz, W.J. & Angleson, J.K. The synaptic vesicle cycle. Annu. Rev. Physiol. 60, 347–363 (1998).
    Article CAS Google Scholar
  26. Holt, M., Cooke, A., Wu, M.M. & Lagnado, L. Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J. Neurosci. 23, 1329–1339 (2003).
    Article CAS Google Scholar
  27. He, L., Wu, X.S., Mohan, R. & Wu, L.G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444, 102–105 (2006).
    Article CAS Google Scholar
  28. Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).
    Article Google Scholar
  29. Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786 (2006).
    Article CAS Google Scholar
  30. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358 (2006).
    Article CAS Google Scholar
  31. Haas, A.K., Fuchs, E., Kopajtich, R. & Barr, F.A.A. GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat. Cell Biol. 7, 887–893 (2005).
    Article CAS Google Scholar
  32. Ferguson, S.M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570–574 (2007).
    Article CAS Google Scholar
  33. Von Gersdorff, H. & Borst, J.G.G. Short-term plasticity at the calyx of Held. Nat. Rev. Neurosci. 3, 53–64 (2002).
    Article CAS Google Scholar
  34. Oertel, D. The role of timing in the brain stem auditory nuclei of vertebrates. Annu. Rev. Physiol. 61, 497–519 (1999).
    Article CAS Google Scholar
  35. Boraud, T., Bezard, E., Bioulac, B. & Gross, C.E. From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog. Neurobiol. 66, 265–283 (2002).
    Article Google Scholar
  36. Bear, M.F. Bidirectional synaptic plasticity: from theory to reality. Phil. Trans. R. Soc. Lond. B 358, 649–655 (2003).
    Article Google Scholar
  37. de Lange, R.P., de Roos, A.D. & Borst, J.G. Two modes of vesicle recycling in the rat calyx of Held. J. Neurosci. 23, 10164–10173 (2003).
    Article CAS Google Scholar
  38. Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69 (2005).
    Article CAS Google Scholar
  39. Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol. 7, 570–580 (2005).
    Article CAS Google Scholar
  40. Yang, J.S. et al. Key components of the fission machinery are interchangeable. Nat. Cell Biol. 8, 1376–1382 (2006).
    Article CAS Google Scholar
  41. Praefcke, G.J. & McMahon, H.T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat. Rev. Mol. Cell Biol. 5, 133–147 (2004).
    Article CAS Google Scholar
  42. Heidelberger, R. ATP is required at an early step in compensatory endocytosis in synaptic terminals. J. Neurosci. 21, 6467–6474 (2001).
    Article CAS Google Scholar
  43. Graham, M.E., O'Callaghan, D.W., McMahon, H.T. & Burgoyne, R.D. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc. Natl. Acad. Sci. USA 99, 7124–7129 (2002).
    Article CAS Google Scholar
  44. Zhang, C. et al. Calcium- and dynamin-independent endocytosis in dorsal root ganglion neurons. Neuron 42, 225–236 (2004).
    Article CAS Google Scholar
  45. Sun, J.Y. et al. Capacitance measurements at the calyx of Held in the medial nucleus of the trapezoid body. J. Neurosci. Methods 134, 121–131 (2004).
    Article Google Scholar
  46. Wong, A.Y., Graham, B.P., Billups, B. & Forsythe, I.D. Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. J. Neurosci. 23, 4868–4877 (2003).
    Article CAS Google Scholar
  47. Xu, J. & Wu, L.G. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46, 633–645 (2005).
    Article CAS Google Scholar
  48. Kay, A.R. et al. Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron 24, 809–817 (1999).
    Article CAS Google Scholar

Download references