GTP-independent rapid and slow endocytosis at a central synapse (original) (raw)
References
Fernandez-Alfonso, T. & Ryan, T.A. The efficiency of the synaptic vesicle cycle at central nervous system synapses. Trends Cell Biol.16, 413–420 (2006). ArticleCAS Google Scholar
Koenig, J.H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci.9, 3844–3860 (1989). ArticleCAS Google Scholar
Chen, M.S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature351, 583–586 (1991). ArticleCAS Google Scholar
van der Bliek, A.M. & Meyerowitz, E.M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature351, 411–414 (1991). ArticleCAS Google Scholar
Damke, H., Baba, T., Warnock, D.E. & Schmid, S.L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol.127, 915–934 (1994). ArticleCAS Google Scholar
Takei, K., McPherson, P.S., Schmid, S.L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-rS in nerve terminals. Nature374, 186–190 (1995). ArticleCAS Google Scholar
Sweitzer, S.M. & Hinshaw, J.E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell93, 1021–1029 (1998). ArticleCAS Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001). ArticleCAS Google Scholar
Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature441, 528–531 (2006). ArticleCAS Google Scholar
Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science276, 259–263 (1997). ArticleCAS Google Scholar
Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature426, 559–563 (2003). ArticleCAS Google Scholar
Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron20, 917–925 (1998). ArticleCAS Google Scholar
Yamashita, T., Hige, T. & Takahashi, T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science307, 124–127 (2005). ArticleCAS Google Scholar
Newton, A.J., Kirchhausen, T. & Murthy, V.N. Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA103, 17955–17960 (2006). ArticleCAS Google Scholar
Jockusch, W.J., Praefcke, G.J., McMahon, H.T. & Lagnado, L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron46, 869–878 (2005). ArticleCAS Google Scholar
Artalejo, C.R., Elhamdani, A. & Palfrey, H.C. Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2–mediated slow endocytosis in chromaffin cells. Proc. Natl. Acad. Sci. USA99, 6358–6363 (2002). ArticleCAS Google Scholar
Artalejo, C.R., Henley, J.R., McNiven, M.A. & Palfrey, H.C. Rapic endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP and dynamin, but not clathrin. Proc. Natl. Acad. Sci. USA92, 8328–8332 (1995). ArticleCAS Google Scholar
Dautry-Varsat, A. Clathrin-independent endocytosis. in Endocytosis (ed. Marsh, M.) 26–57 (Oxford University Press, Oxford, 2001). Google Scholar
Damke, H., Baba, T., van der Bliek, A.M. & Schmid, S.L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol.131, 69–80 (1995). ArticleCAS Google Scholar
Kirkham, M. & Parton, R.G. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta1746, 349–363 (2005). ArticleCAS Google Scholar
Wu, W., Xu, J., Wu, X.S. & Wu, L.G. Activity-dependent acceleration of endocytosis at a central synapse. J. Neurosci.25, 11676–11683 (2005). ArticleCAS Google Scholar
Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell10, 839–850 (2006). ArticleCAS Google Scholar
Pang, Z.P., Sun, J., Rizo, J., Maximov, A. & Sudhof, T.C. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J.25, 2039–2050 (2006). ArticleCAS Google Scholar
De Camilli, P., Slepnev, V.I., Shupliakov, O. & Brodin, L. Synaptic vesicle endocytosis. in Synapses (eds. Cowan, W.M., Sudhof, T.C. & Stevens, C.F.) 217–274 (The Johns Hopkins University Press, Baltimore and London, 2001). Google Scholar
Betz, W.J. & Angleson, J.K. The synaptic vesicle cycle. Annu. Rev. Physiol.60, 347–363 (1998). ArticleCAS Google Scholar
Holt, M., Cooke, A., Wu, M.M. & Lagnado, L. Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. J. Neurosci.23, 1329–1339 (2003). ArticleCAS Google Scholar
He, L., Wu, X.S., Mohan, R. & Wu, L.G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature444, 102–105 (2006). ArticleCAS Google Scholar
Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci.22, 10567–10579 (2002). Article Google Scholar
Granseth, B., Odermatt, B., Royle, S.J. & Lagnado, L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron51, 773–786 (2006). ArticleCAS Google Scholar
D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol.7, 347–358 (2006). ArticleCAS Google Scholar
Haas, A.K., Fuchs, E., Kopajtich, R. & Barr, F.A.A. GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat. Cell Biol.7, 887–893 (2005). ArticleCAS Google Scholar
Ferguson, S.M. et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science316, 570–574 (2007). ArticleCAS Google Scholar
Von Gersdorff, H. & Borst, J.G.G. Short-term plasticity at the calyx of Held. Nat. Rev. Neurosci.3, 53–64 (2002). ArticleCAS Google Scholar
Oertel, D. The role of timing in the brain stem auditory nuclei of vertebrates. Annu. Rev. Physiol.61, 497–519 (1999). ArticleCAS Google Scholar
Boraud, T., Bezard, E., Bioulac, B. & Gross, C.E. From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog. Neurobiol.66, 265–283 (2002). Article Google Scholar
Bear, M.F. Bidirectional synaptic plasticity: from theory to reality. Phil. Trans. R. Soc. Lond. B358, 649–655 (2003). Article Google Scholar
de Lange, R.P., de Roos, A.D. & Borst, J.G. Two modes of vesicle recycling in the rat calyx of Held. J. Neurosci.23, 10164–10173 (2003). ArticleCAS Google Scholar
Bonazzi, M. et al. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol.7, 570–580 (2005). ArticleCAS Google Scholar
Yang, J.S. et al. Key components of the fission machinery are interchangeable. Nat. Cell Biol.8, 1376–1382 (2006). ArticleCAS Google Scholar
Praefcke, G.J. & McMahon, H.T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat. Rev. Mol. Cell Biol.5, 133–147 (2004). ArticleCAS Google Scholar
Heidelberger, R. ATP is required at an early step in compensatory endocytosis in synaptic terminals. J. Neurosci.21, 6467–6474 (2001). ArticleCAS Google Scholar
Graham, M.E., O'Callaghan, D.W., McMahon, H.T. & Burgoyne, R.D. Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size. Proc. Natl. Acad. Sci. USA99, 7124–7129 (2002). ArticleCAS Google Scholar
Zhang, C. et al. Calcium- and dynamin-independent endocytosis in dorsal root ganglion neurons. Neuron42, 225–236 (2004). ArticleCAS Google Scholar
Sun, J.Y. et al. Capacitance measurements at the calyx of Held in the medial nucleus of the trapezoid body. J. Neurosci. Methods134, 121–131 (2004). Article Google Scholar
Wong, A.Y., Graham, B.P., Billups, B. & Forsythe, I.D. Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. J. Neurosci.23, 4868–4877 (2003). ArticleCAS Google Scholar
Xu, J. & Wu, L.G. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron46, 633–645 (2005). ArticleCAS Google Scholar
Kay, A.R. et al. Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron24, 809–817 (1999). ArticleCAS Google Scholar