Short-term plasticity at the calyx of held (original) (raw)
Silver, R. A., Momiyama, A. & Cull-Candy, S. G. Locus of frequency-dependent depression identified with multiple-probability fluctuation analysis at rat climbing fibre–Purkinje cell synapses. J. Physiol. (Lond.)510, 881–902 (1998).A comprehensive study of presynaptic depression at a giant mammalian synapse that shows severe depression in P12–P14 rats. Release probability was heterogeneous and high at rest, but fell markedly during high-frequency stimulation (10 Hz). ArticleCAS Google Scholar
Thomson, A. M. Molecular frequency filters at central synapses. Prog. Neurobiol.62, 159–196 (2000). ArticleCASPubMed Google Scholar
Fortune, E. S. & Rose, G. J. Short-term synaptic plasticity as a temporal filter. Trends Neurosci.24, 381–385 (2001). ArticleCASPubMed Google Scholar
Regehr, W. & Stevens, C. F. in Synapses (eds Cowan, M., Südhof, T. & Stevens, C. F.) 135–175 (Johns Hopkins Univ. Press, Baltimore, Maryland, 2000). Google Scholar
Zucker, R. S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol.9, 305–313 (1999). ArticleCASPubMed Google Scholar
Sätzler, K. et al. 3-D reconstruction and detailed analysis of active zones located at the calyx of Held. Soc. Neurosci. Abstr.27, 384.15 (2001). Google Scholar
Lenn, N. J. & Reese, T. S. The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am. J. Anat.118, 375–390 (1966). ArticleCASPubMed Google Scholar
Smith, P. H., Joris, P. X. & Yin, T. C. Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J. Neurophysiol.79, 3127–3142 (1998). ArticleCASPubMed Google Scholar
Forsythe, I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. (Lond.)479, 381–387 (1994).The first patch-clamp recordings from a mammalian nerve terminal. Constant current injection showed that the calyx could fire multiple action potentials. In contrast, the principal (postsynaptic) cell fired only once. Article Google Scholar
Borst, J. G. G. Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.)489, 825–840 (1995).The first paired recordings from the calyx and principal cell of the MNTB. Presynaptic calcium buffering capacity was surprisingly lower than that of hair cells. ArticleCAS Google Scholar
Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.)195, 481–492 (1968). ArticleCAS Google Scholar
Llinás, R. R. The Squid Giant Synapse: a Model for Chemical Transmission (Oxford Univ. Press, New York, 1999). Google Scholar
Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci.24, 637–643 (2001). ArticleCASPubMed Google Scholar
Futai, K., Okada, M., Matsuyama, K. & Takahashi, T. High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. J. Neurosci.21, 3342–3349 (2001). ArticleCASPubMedPubMed Central Google Scholar
Taschenberger, H. & Von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci.20, 9162–9173 (2000). ArticleCASPubMedPubMed Central Google Scholar
Reyes, A. & Sakmann, B. Developmental switch in the short-term modification of unitary EPSPs evoked in layer 2/3 and layer 5 pyramidal neurons of rat neocortex. J. Neurosci.19, 3827–3835 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kandler, K. & Friauf, E. Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J. Comp. Neurol.328, 161–184 (1993). ArticleCASPubMed Google Scholar
Morest, D. K. The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z. Anat. Entwicklungsgesch.127, 201–220 (1968).The first systematic study of calyx development, with a review of the early literature. ArticleCASPubMed Google Scholar
Rowland, K. C., Irby, N. K. & Spirou, G. A. Specialized synapse-associated structures within the calyx of Held. J. Neurosci.20, 9135–9144 (2000).Specialized structures associated with mitochondria were found in the calyx of Held of adult cats. Several interesting ideas for their possible function in high-frequency firing are proposed in this paper. ArticleCASPubMedPubMed Central Google Scholar
Borst, J. G. G. & Sakmann, B. Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Phil. Trans. R. Soc. Lond. B354, 347–355 (1999). ArticleCAS Google Scholar
Sabatini, B. L. & Regehr, W. G. Timing of synaptic transmission. Annu. Rev. Physiol.61, 521–542 (1999). ArticleCASPubMed Google Scholar
Lohmann, C. & Friauf, E. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J. Comp. Neurol.367, 90–109 (1996). ArticleCASPubMed Google Scholar
Elezgarai, I. et al. Developmental expression of the group III metabotropic glutamate receptor mGluR4a in the medial nucleus of the trapezoid body of the rat. J. Comp. Neurol.411, 431–440 (1999). ArticleCASPubMed Google Scholar
Chuhma, N. & Ohmori, H. Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. J. Neurosci.18, 512–520 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wu, L.-G., Westenbroek, R. E., Borst, J. G. G., Catterall, W. E. & Sakmann, B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci.19, 726–736 (1999). ArticleCASPubMedPubMed Central Google Scholar
Iwasaki, S. & Takahashi, T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J. Physiol. (Lond.)509, 419–423 (1998). ArticleCAS Google Scholar
Geiger, J. R. P. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron15, 193–204 (1995). ArticleCASPubMed Google Scholar
Caicedo, A. & Eybalin, M. Glutamate receptor phenotypes in the auditory brainstem and mid-brain of the developing rat. Eur. J. Neurosci.11, 51–74 (1999). ArticleCASPubMed Google Scholar
Lawrence, J. J. & Trussell, L. O. Long-term specification of AMPA receptor properties after synapse formation. J. Neurosci.20, 4864–4870 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bellingham, M. C., Lim, R. & Walmsley, B. Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J. Physiol. (Lond.)511, 861–869 (1998). ArticleCAS Google Scholar
Brenowitz, S. & Trussell, L. O. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. J. Neurosci.21, 9487–9498 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fisher, S. A., Fischer, T. M. & Carew, T. J. Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci.20, 170–177 (1997). ArticleCASPubMed Google Scholar
Chen, C. & Regehr, W. G. Contributions of residual calcium to fast synaptic transmission. J. Neurosci.19, 6257–6266 (1999).Simultaneous calcium imaging and EPSC recordings from cerebellar synapses reveal the timing of residual calcium and its role in delayed release. ArticleCASPubMedPubMed Central Google Scholar
Barnes-Davies, M. & Forsythe, I. D. Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J. Physiol. (Lond.)488, 387–406 (1995). ArticleCAS Google Scholar
Helmchen, F., Borst, J. G. G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J.72, 1458–1471 (1997). ArticleCASPubMedPubMed Central Google Scholar
Borst, J. G. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature383, 431–434 (1996). ArticleCASPubMed Google Scholar
Chuhma, N., Koyano, K. & Ohmori, H. Synchronisation of neurotransmitter release during postnatal development in a calyceal presynaptic terminal of rat. J. Physiol. (Lond.)530, 93–104 (2001). ArticleCAS Google Scholar
Sakaba, T. & Neher, E. Quantitative relationship between transmitter release and calcium current at the calyx of Held synapse. J. Neurosci.21, 462–476 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. (Lond.)531, 807–826 (2001). ArticleCAS Google Scholar
Bollmann, J. H., Sakmann, B. & Borst, J. G. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science289, 953–957 (2000). ArticleCASPubMed Google Scholar
Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature406, 889–893 (2000).In references41and42, the high sensitivity of AMPA receptors to released glutamate was used, together with flash-photolysis of caged calcium, to study the calcium dependence of release at the calyx of Held. Low micromolar elevations of internal calcium were sufficient to trigger release. ArticleCASPubMed Google Scholar
Turecek, R. & Trussell, L. O. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature411, 587–590 (2001). ArticleCASPubMed Google Scholar
Rudomin, P. & Schmidt, R. F. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res.129, 1–37 (1999). ArticleCASPubMed Google Scholar
Borst, J. G. G. & Sakmann, B. Facilitation of presynaptic calcium currents in the rat brainstem. J. Physiol. (Lond.)513, 149–155 (1998). ArticleCAS Google Scholar
Cuttle, M. F., Tsujimoto, T., Forsythe, I. D. & Takahashi, T. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J. Physiol. (Lond.)512, 723–729 (1998). ArticleCAS Google Scholar
Sakaba, T. & Neher, E. Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held. Proc. Natl Acad. Sci. USA98, 331–336 (2001). ArticleCASPubMed Google Scholar
Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature401, 594–598 (1999). ArticleCASPubMed Google Scholar
von Gersdorff, H., Schneggenburger, R., Weis, S. & Neher, E. Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors. J. Neurosci.17, 8137–8146 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mosbacher, J. et al. A molecular determinant for submillisecond desensitization in glutamate receptors. Science266, 1059–1062 (1994). ArticleCASPubMed Google Scholar
Trussell, L. O. Synaptic mechanisms for coding timing in auditory neurons. Annu. Rev. Physiol.61, 477–496 (1999). ArticleCASPubMed Google Scholar
Neher, E. & Sakaba, T. Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of Held. J. Neurosci.21, 444–461 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sun, J. Y. & Wu, L.-G. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron30, 171–182 (2001).Presynaptic capacitance measurements were used to estimate a surprisingly large vesicle pool size in the calyx of Held, and correlated well with EPSC amplitudes when desensitization and saturation of AMPA receptors were blocked. ArticleCASPubMed Google Scholar
Wang, L.-Y. & Kaczmarek, L. K. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature394, 384–388 (1998). ArticleCASPubMed Google Scholar
Wu, L.-G. & Borst, J. G. G. The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron23, 821–832 (1999). ArticleCASPubMed Google Scholar
Brody, D. L. & Yue, D. T. Release-independent short-term synaptic depression in cultured hippocampal neurons. J. Neurosci.20, 2480–2494 (2000). ArticleCASPubMedPubMed Central Google Scholar
Debanne, D., Guerineau, N. C., Gahwiler, B. H. & Thompson, S. M. Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus. Nature389, 286–289 (1997). ArticleCASPubMed Google Scholar
Cox, C. L., Denk, W., Tank, D. W. & Svoboda, K. Action potentials reliably invade axonal arbors of rat neocortical neurons. Proc Natl Acad Sci U S A97, 9724–9728 (2000). ArticleCASPubMedPubMed Central Google Scholar
Koester, H. J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. (Lond.)529, 625–646 (2000). ArticleCAS Google Scholar
Banks, M. I. & Smith, P. H. Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J. Neurosci.12, 2819–2837 (1992). ArticleCASPubMedPubMed Central Google Scholar
Wu, S. H. & Kelly, J. B. Response of neurons in the lateral superior olive and medial nucleus of the trapezoid body to repetitive stimulation: intracellular and extracellular recordings from mouse brain slice. Hear. Res.68, 189–201 (1993). ArticleCASPubMed Google Scholar
Geiger, J. R. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron28, 927–939 (2000).The first patch-clamp recordings from a conventional bouton-type mammalian nerve terminal. AP waveforms changed during high-frequency firing. ArticleCASPubMed Google Scholar
Jackson, M. B., Konnerth, A. & Augustine, G. J. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc Natl Acad Sci U S A88, 380–384 (1991). ArticleCASPubMedPubMed Central Google Scholar
Charlton, M. P., Smith, S. J. & Zucker, R. S. Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse. J. Physiol. (Lond.)323, 173–193 (1982). ArticleCAS Google Scholar
von Gersdorff, H. & Matthews, G. Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. J. Neurosci.17, 1919–1927 (1997). ArticleCASPubMedPubMed Central Google Scholar
Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M. F. & Takahashi, T. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron20, 797–807 (1998). ArticleCASPubMed Google Scholar
Isaacson, J. S. GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. J. Neurophysiol.80, 1571–1576 (1998). ArticleCASPubMed Google Scholar
Kajikawa, Y., Saitoh, N. & Takahashi, T. GTP-binding protein βγ subunits mediate presynaptic calcium current inhibition by GABAB receptor. Proc Natl Acad Sci U S A98, 8054–8058 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T., Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M. & Onodera, K. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science274, 594–597 (1996). ArticleCASPubMed Google Scholar
Wu, L.-G., Borst, J. G. G. & Sakmann, B. R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc. Natl Acad. Sci. USA95, 4720–4725 (1998). ArticleCASPubMedPubMed Central Google Scholar
Leão, R. & Von Gersdorff, H. Noradrenaline increases the high-frequency firing of the calyx of Held synapse during early development by inhibiting glutamate release. J. Neurophysiol. (in the press).
Iwasaki, S. & Takahashi, T. Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem. J. Physiol. (Lond.)534, 861–871 (2001).The rate of recovery from depression elicited by 10-Hz stimulation did not change during development, indicating that some synaptic parameters are not so sensitive to age. ArticleCAS Google Scholar
Wilson, R. I. & Nicoll, R. A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature410, 588–592 (2001). ArticleCASPubMed Google Scholar
Borst, J. G. G. & Sakmann, B. Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem. J. Physiol. (Lond.)521, 123–133 (1999). ArticleCAS Google Scholar
Weis, S., Schneggenburger, R. & Neher, E. Properties of a model of Ca++-dependent vesicle pool dynamics and short term synaptic depression. Biophys. J.77, 2418–2429 (1999). ArticleCASPubMedPubMed Central Google Scholar
Liley, A. W. & North, K. A. K. An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol.16, 509–527 (1953). ArticleCASPubMed Google Scholar
Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron16, 1197–1207 (1996). ArticleCASPubMed Google Scholar
Schneggenburger, R., Meyer, A. C. & Neher, E. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron23, 399–409 (1999). ArticleCASPubMed Google Scholar
Wu, X. S. & Wu, L. G. Protein kinase C increases the apparent affinity of the release machinery to Ca2+ by enhancing the release machinery downstream of the Ca2+ sensor. J. Neurosci.21, 7928–7936 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dittman, J. S. & Regehr, W. G. Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J. Neurosci.18, 6147–6162 (1998). ArticleCASPubMedPubMed Central Google Scholar
Stevens, C. F. & Wesseling, J. F. Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron21, 415–424 (1998). ArticleCASPubMed Google Scholar
Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron (in the press).
Hsu, S.-F., Augustine, G. J. & Jackson, M. B. Adaptation of Ca2+-triggered exocytosis in presynaptic terminals. Neuron17, 501–512 (1996). ArticleCASPubMed Google Scholar
Schikorski, T. & Stevens, C. F. Morphological correlates of functionally defined synaptic vesicle populations. Nature Neurosci.4, 391–395 (2001). ArticleCASPubMed Google Scholar
Meyer, A. C., Neher, E. & Schneggenburger, R. Estimation of quantal size and number of functional active zones at the calyx of Held synapse by nonstationary EPSC variance analysis. J. Neurosci.21, 7889–7900 (2001). ArticleCASPubMedPubMed Central Google Scholar
Van der Kloot, W. & Molgó, J. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev.74, 899–991 (1994).A massive undertaking that reviews the synaptic physiology of the neuromuscular junction. A valuable source of references on short-term plasticity. ArticleCASPubMed Google Scholar
Leenders, A. G., Scholten, G., Wiegant, V. M., da Silva, F. H. & Ghijsen, W. E. Activity-dependent neurotransmitter release kinetics: correlation with changes in morphological distributions of small and large vesicles in central nerve terminals. Eur. J. Neurosci.11, 4269–4277 (1999). ArticleCASPubMed Google Scholar
Waldeck, R. F., Pereda, A. & Faber, D. S. Properties and plasticity of paired-pulse depression at a central synapse. J. Neurosci.20, 5312–5320 (2000). ArticleCASPubMedPubMed Central Google Scholar
Korn, H., Sur, C., Charpier, S., Legendre, P. & Faber, D. S. in Molecular and Cellular Mechanisms of Neurotransmitter Release (eds Stjärne, L., Greengard, P., Grillner, S., Hökfelt, T. & Ottoson, D.) 301–322 (Raven, New York, 1994). Book Google Scholar
Stevens, C. F. & Wang, Y. Facilitation and depression at single central synapses. Neuron14, 795–802 (1995). ArticleCASPubMed Google Scholar
Walmsley, B., Alvarez, F. J. & Fyffe, R. E. W. Diversity of structure and function at mammalian central synapses. Trends Neurosci.21, 81–88 (1998). ArticleCASPubMed Google Scholar
Auger, C. & Marty, A. Quantal currents at single-site central synapses. J. Physiol. (Lond.)526, 3–11 (2000). ArticleCAS Google Scholar
von Gersdorff, H., Vardi, E., Matthews, G. & Sterling, P. Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron16, 1221–1227 (1996). ArticleCASPubMed Google Scholar
Ishikawa, T., Sahara, Y. & Takahashi, T. A single packet of glutamate does not saturate postsynaptic AMPA receptors at the calyx of Held synapse. Soc. Neurosci. Abstr.26, 422.1 (2000).
Bollmann, J. H., Helmchen, F., Borst, J. G. G. & Sakmann, B. Postsynaptic Ca2+ influx mediated by three different pathways during synaptic transmission at a calyx-type synapse. J. Neurosci.18, 10409–10419 (1998). ArticleCASPubMedPubMed Central Google Scholar
Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y. & Labarca, P. Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron28, 941–953 (2000). ArticleCASPubMed Google Scholar
Lüthi, A. et al. Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons. J. Neurosci.21, 9101–9111 (2001). ArticlePubMedPubMed Central Google Scholar
Takahashi, T., Hori, T., Kajikawa, Y. & Tsujimoto, T. The role of GTP-binding protein activity in fast central synaptic transmission. Science289, 460–463 (2000). ArticleCASPubMed Google Scholar
Zhang, S. & Trussell, L. O. Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. J. Physiol. (Lond.)480, 123–136 (1994). ArticleCAS Google Scholar
Ishikawa, T. & Takahashi, T. Mechanisms underlying presynaptic facilitatory effect of cyclothiazide at the calyx of Held of juvenile rats. J. Physiol. (Lond.)533, 423–431 (2001). ArticleCAS Google Scholar
Partin, K. M., Fleck, M. W. & Mayer, M. L. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J. Neurosci.16, 6634–6647 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wang, L.-Y. The dynamic range for gain control of NMDA receptor-mediated synaptic transmission at a single synapse. J. Neurosci.20, RC115 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wadiche, J. I. & Jahr, C. E. Multivesicular release at climbing fiber–Purkinje cell synapses. Neuron32, 301–313 (2001). ArticleCASPubMed Google Scholar
Jones, H. C. & Keep, R. F. Brain interstitial fluid calcium concentration during development in the rat: control levels and changes in acute plasma hypercalcaemia. Physiol. Bohemoslov.37, 213–216 (1988). CASPubMed Google Scholar
Wu, S. H. & Oertel, D. Maturation of synapses and electrical properties of cells in the cochlear nuclei. Hear. Res.30, 99–110 (1987). ArticleCASPubMed Google Scholar
Spirou, G. A., Brownell, W. E. & Zidanic, M. Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J. Neurophysiol.63, 1169–1190 (1990). ArticleCASPubMed Google Scholar
Guinan, J. J. Jr & Li, R. Y.-S. Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hear. Res.49, 321–334 (1990). ArticlePubMed Google Scholar
Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science275, 220–224 (1997). ArticleCASPubMed Google Scholar
Malone, B. J. & Semple, M. N. Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus. J. Neurophysiol.86, 1113–1130 (2001). ArticleCASPubMed Google Scholar
Landmesser, L. & Pilar, G. The onset and development of transmission in the chick ciliary ganglion. J. Physiol. (Lond.)222, 691–713 (1972). ArticleCAS Google Scholar
Ramón y Cajal, S. Neuron Theory or Reticular Theory? Objective Evidence of the Anatomical Unity of Nerve Cells (Consejo Superior de Investigaciones Científicas, Instituto Cajal, Madrid, 1954). Google Scholar
Molnar, C. E. & Pfeiffer, R. R. Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus. Proc. IEEE56, 993–1004 (1968). Article Google Scholar
Carr, C. E. Processing of temporal information in the brain. Annu. Rev. Neurosci.16, 223–243 (1993). ArticleCASPubMed Google Scholar
Joris, P. X., Smith, P. H. & Yin, T. C. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. J. Neurophysiol.71, 1037–1051 (1994). ArticleCASPubMed Google Scholar
Paolini, A. G., FitzGerald, J. V., Burkitt, A. N. & Clark, G. M. Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat. Hear. Res.159, 101–116 (2001). ArticleCASPubMed Google Scholar
Joris, P. X. & Yin, T. C. Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. J. Neurophysiol.79, 253–269 (1998). ArticleCASPubMed Google Scholar
Park, T. J., Monsivais, P. & Pollak, G. D. Processing of interaural intensity differences in the LSO: role of interaural threshold differences. J. Neurophysiol.77, 2863–2878 (1997). ArticleCASPubMed Google Scholar