The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations (original) (raw)

References

  1. Fentress, J.C., Stanfield, B.B. & Cowan, W.M. Observation on the development of the striatum in mice and rats. Anat. Embryol. (Berl.) 163, 275–298 (1981).
    Article CAS Google Scholar
  2. Smart, I.H.M. and Sturrock, R.R. in The Neostriatum (eds. Divac, I. & Oberg, R.G.E.) 127–147 (Pergamon, Oxford, 1979).
    Book Google Scholar
  3. Puelles, L. et al. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J. Comp. Neurol. 424, 409–438 (2000).
    Article CAS PubMed Google Scholar
  4. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes [see comments]. Science 278, 474–476 (1997).
    Article CAS PubMed Google Scholar
  5. Anderson, S.A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J.L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).
    CAS PubMed Google Scholar
  6. de Carlos, J.A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  7. Lavdas, A.A., Grigoriou, M., Pachnis, V. & Parnavelas, J.G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  8. Pleasure, S.J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 727–740 (2000).
    Article CAS PubMed Google Scholar
  9. Tamamaki, N., Fujimori, K.E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  10. Anderson, S.A. et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37 (1997).
    Article CAS PubMed Google Scholar
  11. Casarosa, S., Fode, C. & Guillemot, F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534 (1999).
    CAS PubMed Google Scholar
  12. Corbin, J.G., Gaiano, N., Machold, R.P., Langston, A. & Fishell, G. The Gsh2 homeodomain gene controls multiple aspects of telencephalic development. Development 127, 5007–5020 (2000).
    CAS PubMed Google Scholar
  13. Marin, O., Anderson, S.A. & Rubenstein, J.L. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–6076 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  14. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J.L. Loss of Wkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).
    CAS PubMed Google Scholar
  15. Toresson, H., Potter, S.S. & Campbell, K. Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371 (2000).
    CAS PubMed Google Scholar
  16. Yun, K., Potter, S. & Rubenstein, J.L. Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205 (2001).
    CAS PubMed Google Scholar
  17. Corbin, J.G., Nery, S. & Fishell, G. Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat. Neurosci. 4, (Suppl.), 1177–1182 (2001).
    Article CAS PubMed Google Scholar
  18. Parnavelas, J.G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).
    Article CAS PubMed Google Scholar
  19. He, W., Ingraham, C., Rising, L., Goderie, S. & Temple, S. Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis. J. Neurosci. 21, 8854–8862 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  20. Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540 (2001).
    CAS PubMed Google Scholar
  21. Olivier, C. et al. Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo. Development 128, 1757–1769 (2001).
    CAS PubMed Google Scholar
  22. Perez Villegas, E.M. et al. Early specification of oligodendrocytes in the chick embryonic brain. Dev. Biol. 216, 98–113 (1999).
    Article CAS PubMed Google Scholar
  23. Spassky, N. et al. Multiple restricted origin of oligodendrocytes. J. Neurosci. 18, 8331–8343 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  24. Wichterle, H., Turnbull, D.H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).
    CAS PubMed Google Scholar
  25. Olsson, M., Bjorklund, A. & Campbell, K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84, 867–876 (1998).
    Article CAS PubMed Google Scholar
  26. Kim, A.S., Anderson, S.A., Rubenstein, J.L., Lowenstein, D.H. & Pleasure, S.J. Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS. J. Neurosci. 21, RC132 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  27. Toresson, H., Mata de Urquiza, A., Fagerstrom, C., Perlmann, T. & Campbell, K. Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. Development 126, 1317–1326 (1999).
    CAS PubMed Google Scholar
  28. Szucsik, J.C. et al. Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev. Biol. 191, 230–242 (1997).
    Article CAS PubMed Google Scholar
  29. Garel, S., Marin, F., Grosschedl, R. & Charnay, P. Ebf1 controls early cell differentiation in the embryonic striatum. Development 126, 5285–5294 (1999).
    CAS PubMed Google Scholar
  30. Wichterle, H., Garcia-Verdugo, J.M., Herrera, D.G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat. Neurosci. 2, 461–466 (1999).
    Article CAS PubMed Google Scholar
  31. DeFelipe, J. Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins and cell surface molecules. Cereb. Cortex 3, 273–289 (1993).
    Article CAS PubMed Google Scholar
  32. Gonchar, Y. & Burkhalter, A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7, 347–358 (1997).
    Article CAS PubMed Google Scholar
  33. Kubota, Y., Hattori, R. & Yui, Y. Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res. 649, 159–173 (1994).
    Article CAS PubMed Google Scholar
  34. Ouimet, C.C., Miller, P.E., Hemmings, H.C. Jr., Walaas, S.I. & Greengard, P. DARPP-32, a dopamine- and adenosine 3':5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J. Neurosci. 4, 111–124 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  35. Hevner, R.F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).
    Article CAS PubMed Google Scholar
  36. Olsson, M., Campbell, K., Wictorin, K. & Bjorklund, A. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence. Neuroscience 69, 1169–1182 (1995).
    Article CAS PubMed Google Scholar
  37. Marin, O. & Rubenstein, J.L. A long, remarkable journey: tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780–790 (2001).
    Article CAS PubMed Google Scholar
  38. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).
    Article CAS PubMed Google Scholar
  39. Angevine, J.B. Jr. & Sidman, R.L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).
    Article PubMed Google Scholar
  40. McConnell, S.K. & Kaznowski, C.E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).
    Article CAS PubMed Google Scholar
  41. Liu, A., Joyner, A.L. & Turnbull, D.H. Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech. Dev. 75, 107–115 (1998).
    Article CAS PubMed Google Scholar
  42. Martin, J.H. Neuroanatomy: Text and Atlas (Elsevier, New York, 1989).
  43. Paxinos, G. The Rat Nervous System (Academic, New York, 1995).
  44. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993).
    Article CAS PubMed Google Scholar
  45. Wilkinson, D.G. & Nieto, M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993).
    Article CAS PubMed Google Scholar
  46. Gaiano, N., Kohtz, J.D., Turnbull, D.H. & Fishell, G. A method for rapid gain-of-function studies in the mouse embryonic nervous system [see comments]. Nat. Neurosci. 2, 812–819 (1999).
    Article CAS PubMed Google Scholar
  47. DePrimo, S.E., Stambrook, P.J. & Stringer, J.R. Human placental alkaline phosphatase as a histochemical marker of gene expression in transgenic mice. Transgenic Res. 5, 459–466 (1996).
    Article CAS PubMed Google Scholar

Download references