- Schuster, A. An Introduction to the Theory of Optics (Arnold, London, 1904).
MATH Google Scholar
- Lamb, H. On group-velocity. Proc. Lond. Math. Soc. 1, 473–479 (1904).
Article MathSciNet MATH Google Scholar
- Mandel'shtam, L. I. Group velocity in a crystal lattice. Zh. Eksp. Teor. Fiz. 15, 475–478 (1945).
Google Scholar
- Sivukhin, D. V. The energy of electromagnetic waves in dispersive media. Opt. Spektrosk 3, 308–312 (1957).
Google Scholar
- Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).
Article ADS Google Scholar
- Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).
Article ADS Google Scholar
- Kosaka, H. et al. Superprism phenomena in photonic crystals. Phys. Rev. B 58, 10096–10099 (1998).
Article ADS MathSciNet Google Scholar
- Notomi, M. Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, R10696–R10705 (2000).
Article ADS Google Scholar
- Gralak, B., Enoch, S. & Tayeb, G. Anomalous refractive properties of photonic crystals. J. Opt. Soc. Am. A 17, 1012–1020 (2000).
Article ADS Google Scholar
- Luo, C. et al. All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104 (2002).
Article ADS Google Scholar
- Berrier, A. et al. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett. 93, 073902 (2004).
Article ADS Google Scholar
- Smith, D. R. et al. Limitations on sub-diffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003).
Article ADS Google Scholar
- Luo, C. et al. Sub-wavelength imaging in photonic crystals. Phys. Rev. B 68, 045115 (2003).
Article ADS Google Scholar
- Lu, Z. et al. Three-dimensional sub-wavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies. Phys. Rev. Lett. 95, 153901 (2005).
Article ADS Google Scholar
- Eleftheriades, G. V., Iyer, A. K. & Kremer, P. C. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microwave Theory Tech. 50, 2702–2712 (2002).
Article ADS Google Scholar
- Alù, A. & Engheta, N. Optical nanotransmission lines: Synthesis of planar left-handed metamaterials in the infrared and visible regimes. J. Opt. Soc. Am. B 23, 571–583 (2006).
Article ADS Google Scholar
- Depine, R. A. & Lakhtakia, A. A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microwave Opt. Technol. Lett. 41, 315–316 (2004).
Article Google Scholar
- McCall, M. W., Lakhtakia, A. & Weiglhofer, W. S. The negative index of refraction demystified. Eur. J. Phys. 23, 353–359 (2002).
Article Google Scholar
- Agranovich, V. M. et al. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 69, 165112 (2004).
Article ADS Google Scholar
- Podolskiy, V. A. & Narimanov, E. E. Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101 (2005).
Article ADS Google Scholar
- Shin, H. & Fan, S. All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys. Rev. Lett. 96, 073907 (2006).
Article ADS Google Scholar
- Pendry, J. B. et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
Article ADS Google Scholar
- Smith, D. R. et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).
Article ADS Google Scholar
- Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).
Article ADS Google Scholar
- Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).
Article ADS Google Scholar
- Zhang, S. et al. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett. 94, 037402 (2005).
Article ADS Google Scholar
- Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).
Article ADS Google Scholar
- Enkrich, C. et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005).
Article ADS Google Scholar
- Kildishev, A. V. et al. Negative refractive index in optics of metal–dielectric composites. J. Opt. Soc. Am. B 23, 423–433 (2006).
Article ADS Google Scholar
- Shvets, G. Urzhumov, Y. A. Negative index meta-materials based on two-dimensional metallic structures. J. Opt. A 8, S122–S130 (2006).
Article ADS Google Scholar
- Yuan, H.-K. et al. A negative permeability material at red light. Preprint at <http://arxiv.org/abs/physics/0610118> (2006).
Google Scholar
- International Commission on Illumination (1987): International Lighting Vocabulary 4th edn (CIE, Vienna, 1987).
- Podolskiy, V. A., Sarychev, A. K. & Shalaev, V. M. Plasmon modes in metal nanowires and left-handed materials. J. Nonlin. Opt. Phys. Mater. 11, 65–74 (2002).
Article ADS Google Scholar
- Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).
Article ADS Google Scholar
- Grigorenko, A. Negative refractive index in artificial metamaterials. Opt. Lett. 31, 2483–2485 (2006).
Article ADS Google Scholar
- Kildishev, A. V. et al. Comment on 'Negative refractive index in artificial metamaterials'. Preprint at <http://arxiv.org/abs/physics/0609234> (2006).
- Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).
Article ADS Google Scholar
- Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).
Article ADS Google Scholar
- Lagarkov, A. N. & Sarychev, A. K. Electromagnetic properties of composites containing elongated conducting inclusions. Phys. Rev. B 53, 6318–6336 (1996).
Article ADS Google Scholar
- Panina, L. V., Grigorenko, A. N. & Makhnovskiy, D. P. Optomagnetic composite medium with conducting nanoelements. Phys. Rev. B 66, 155411 (2002).
Article ADS Google Scholar
- Podolskiy, V. A., Sarychev, A. K. & Shalaev, V. M. Plasmon modes and negative refraction in metal nanowire composites. Opt. Express 11, 735–745 (2003).
Article ADS Google Scholar
- Engheta, N., Salandrino, A. & Alu, A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors. Phys. Rev. Lett. 95, 095504 (2005).
Article ADS Google Scholar
- Zhang, S. et al. Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies. J. Opt. Soc. Am. B 23, 434–438 (2006).
Article ADS Google Scholar
- Dolling, G. et al. Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006).
Article ADS Google Scholar
- Zhang, S. et al. Near-infrared double negative metamaterials. Opt. Express 13, 4922–4930 (2005).
Article ADS Google Scholar
- Dolling, G. et al. Simultaneous negative phase and group velocity of light in a metamaterial. _Scien_ce 312, 892–894 (2006).
Article ADS Google Scholar
- Dolling G., Wegener, M., Soukoulis, C. M. & Linden, S. Negative-index material at 780 nm wavelength. Preprint at <http://arxiv.org/abs/physics/0607135> (2006).
- Zhou, J. et al. Negative index materials using simple short wire pairs. Phys. Rev. B 73, 041101(R) (2006).
Article ADS Google Scholar
- Chettiar, U. K. et al. Negative index metamaterial combining magnetic resonators with metal films. Opt. Express 14, 7872–7877 (2006).
Article ADS Google Scholar
- Zhang, S. et al. Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Opt. Express 14, 6778–6787 (2006).
Article ADS Google Scholar
- Padilla, W. J. et al. Dynamical electric and magnetic metamaterial response at THz frequencies, Phys. Rev. Lett. 96, 107401 (2006).
Article ADS Google Scholar
- Khoo, I. C. Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).
Google Scholar
- Khoo, I. C. et al. Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystal. Appl. Phys. Lett. 82, 3587–3589 (2003).
Article ADS Google Scholar
- Podolskiy, V. A. & Narimanov, E. E. Near-sighted superlens, Opt. Lett. 30, 75–77 (2005).
Article ADS Google Scholar
- Sirtori, C. et al. Long-wavelength (λ = 8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 23, 1366–1368 (1998).
Article ADS Google Scholar
- Tredicucci, A. et al. Single-mode surface-plasmon laser. Appl. Phys. Lett. 76, 2164–2166 (2000).
Article ADS Google Scholar
- Sudarkin, A. N. & Demkovich, P. A. Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium. Sov. Phys. Tech. Phys. 34, 764–766 (1989).
Google Scholar
- Nezhad, M. P., Tetz, K. & Fainman, Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express 12, 4072–4079 (2004).
Article ADS Google Scholar
- Avrutsky, I. Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain. Phys. Rev. B 70, 155416 (2004).
Article ADS Google Scholar
- Seidel, J., Grafströ m, S. & Eng, L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005).
Article ADS Google Scholar
- Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
Article ADS Google Scholar
- Lawandy, N. M. Localized surface plasmon singularities in amplifying media. Appl. Phys. Lett. 85, 5040–5042 (2004).
Article ADS Google Scholar
- Noginov, M. A. et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett. 31, 3022–3024 (2006).
Article ADS Google Scholar
- Ramakrishna, S. A. & Pendry, J. B. Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys. Rev. B 67, 201101 (2003).
Article ADS Google Scholar
- Shamonina E. et al. Imaging, compression and Poynting vector streamlines for negative permittivity materials. Elec. Lett. 37, 1243–1244 (2001).
Article Google Scholar
- Espinola, R. L. et al. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004).
Article ADS Google Scholar
- Dulkeith, E. et al. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 89, 203002 (2002).
Article ADS Google Scholar
- Imahori, H. et al. Structure and photophysical properties of porphyrin-modified metal nanoclusters with different chain lengths. Langmuir 20, 73–81 (2004).
Article Google Scholar
- Stehr, J. et al. A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 15, 1726 (2003).
Article Google Scholar
- Klar, T. A. et al. Negative-index metamaterials: Going optical. IEEE J. Selec. Top. Quant. Electron. 12, (2006).
- Larkin, I. A. & Stockman, M. I. Imperfect perfect lens. Nano Lett. 5, 339–343 (2005).
Article ADS Google Scholar
- Gabitov, I. R. et al. Double-resonant optical materials with embedded metal nanostructures. J. Opt. Soc. Am. B 23, 535–542 (2006).
Article ADS Google Scholar
- Popov, A. K. & Shalaev, V. M. Negative-index metamaterials: Second-harmonic generation, Manley-Rowe relations and parametric amplification. Appl. Phys. B 84, 131–137 (2006).
Article ADS Google Scholar
- Shadrivov, I. V., Zharov, A. A. & Kivshar, Y. S. Second-harmonic generation in nonlinear left-handed metamaterials. J. Opt. Soc. Am. B 23, 529–534 (2006).
Article ADS Google Scholar
- Zharov, A. A. et al. Subwavelength imaging with opaque nonlinear left-handed lenses. Appl. Phys. Lett. 87, 091104 (2005).
Article ADS Google Scholar
- Klein, M. W. et al. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).
Article ADS Google Scholar
- Litchinitser, N. M. et al. Effect of negative-index thin film on optical bistability. Opt. Lett. (in the press); preprint at <http://arxiv.org/abs/physics/0607177>.
- Popov, A. K. & Shalaev V. M. Compensating losses in negative-index metamaterials with optical parametric amplification. Opt. Lett. 31, 2169–2171 (2006).
Article ADS Google Scholar
- Fang, N., Lee, H. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
Article ADS Google Scholar
- Melville, D. O. S. & Blaikie, R. J. & Wolf, C. R. Submicron imaging with a planar silver lens. Appl. Phys. Lett. 84, 4403–4405 (2004).
Article ADS Google Scholar
- Melville, D. O. S., Blaikie, R. J. Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005).
Article ADS Google Scholar
- Taubner T. et al. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).
Article ADS Google Scholar
- Cai, W., Genov, D. A. & Shalaev, V. M. Superlens based on metal-dielectric composites. Phys. Rev. B 72, 193101 (2005).
Article ADS Google Scholar
- Durant, S., Liu, Z., Fang, N. & Zhang, X. Theory of optical imaging beyond the diffraction limit with a far-field superlens. Proc. SPIE 6323, 63231H (2006).
Article ADS Google Scholar
- Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).
Article ADS Google Scholar
- Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B 74, 075103 (2006).
Article ADS Google Scholar
- Nicorovici, N. A., McPhedran, R. C. & Milton, G. W. Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49, 8479–8482 (1994).
Article ADS Google Scholar
- Milton, G. W. et al. A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. Roy. Soc. A 461, 3999–4034 (2005).
Article ADS MathSciNet MATH Google Scholar
- Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 95, 016623 (2005).
Article ADS Google Scholar
- Garcia de Abajo, F. J. et al. Tunneling mechanism of light transmission through metal films. Phys. Rev. Lett. 95, 067403 (2005).
Article ADS Google Scholar
- Pendry, J. B., Shurig, D. & Smith D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Article ADS MathSciNet MATH Google Scholar
- Leonhardt, U. Optical conforming mapping. Science 312, 1777–1780 (2006).
Article ADS MathSciNet MATH Google Scholar
- Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).
Article ADS MathSciNet Google Scholar
- Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with non-magnetic metamaterials. Preprint at <http://arxiv.org/abs/physics/0611242> (2006).
- Liu, Z. et al. Rapid growth of evanescent wave with a silver superlens. Appl. Phys. Lett. 83, 5184–5186 (2003).
Article ADS Google Scholar