Active induction of experimental allergic encephalomyelitis (original) (raw)
Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol.23, 683–747 (2005). ArticleCASPubMed Google Scholar
Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Annu. Neurol.47, 707–717 (2000). ArticleCAS Google Scholar
Campbell, I.L., Stalder, A.K., Akwa, Y., Pagenstecher, A. & Asensio, V.C. Transgenic models to study the actions of cytokines in the central nervous system. Neuroimmunomodulation5, 126–135 (1998). ArticleCASPubMed Google Scholar
Matsushima, G.K. & Morell, P. The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol.11, 107–116 (2001). ArticleCASPubMed Google Scholar
Ercolini, A.M. & Miller, S.D. Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J. Immunol.176, 3293–3298 (2006). ArticleCASPubMed Google Scholar
Zamvil, S.S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol.8, 579–621 (1990). ArticleCASPubMed Google Scholar
Kuchroo, V.K. et al. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu. Rev. Immunol.20, 101–123 (2002). ArticleCASPubMed Google Scholar
Koritschoner, R.S. & Schweinburg, F. Induktion von Paralyse und Rückenmarksentzündung durch Immunisierung von Kaninchen mit menschlichem Rückenmarksgewebe. Z. Immunitätsf. Exp. Ther.42, 217–283 (1925). Google Scholar
Rivers, T.M., Sprunt, D.H. & Berry, G.P. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J. Exp. Med.58, 39–53 (1933). ArticleCASPubMedPubMed Central Google Scholar
Kabat, E.A., Wolf, A. & Bezer, A.E. The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvant. J. Exp. Med.85, 117–129 (1947). ArticleCASPubMedPubMed Central Google Scholar
Levine, S. & Sowinski, R. Experimental allergic encephalomyelitis in inbred and outbred mice. J. Immunol.110, 139–143 (1973). CASPubMed Google Scholar
Martenson, R.E., Deibler, G.E. & Kies, M.W. Microheterogeneity of guinea pig myelin basic protein. J. Biol. Chem.244, 4261–4267 (1969). CASPubMed Google Scholar
Olitsky, P.K. & Tal, C. Acute disseminated encephalomyelitis produced in mice by brain proteolipid (Folch–Lees). Proc. Soc. Exp. Biol. Med.79, 50–53 (1952). ArticleCASPubMed Google Scholar
Poduslo, S.E. Proteins and glycoproteins in plasma membranes and in the membrane lamellae produced by purified oligodendroglia in culture. Biochim. Biophys. Acta728, 59–65 (1983). ArticleCASPubMed Google Scholar
Lebar, R. & Vincent, C. Tentative identification of a second central nervous system myelin membrane autoantigen (M2) by a biochemical comparison with the basic protein (BP). J. Neuroimmunol.1, 367–389 (1981). ArticleCASPubMed Google Scholar
Linnington, C., Webb, M. & Woodhams, P.L. A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody. J. Neuroimmunol.6, 387–396 (1984). ArticleCASPubMed Google Scholar
Ben-Nun, A., Wekerle, H. & Cohen, I.R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol.11, 195–199 (1981). ArticleCASPubMed Google Scholar
Zamvil, S. et al. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature317, 355–358 (1985). ArticleCASPubMed Google Scholar
McDevitt, H.O., Perry, R. & Steinman, L.A. Monoclonal anti-Ia antibody therapy in animal models of autoimmune disease. Ciba Found. Symp.129, 184–193 (1987). CASPubMed Google Scholar
Seamons, A., Perchellet, A. & Goverman, J. Immune tolerance to myelin proteins. Immunol. Res.28, 201–221 (2003). ArticleCASPubMed Google Scholar
Wekerle, H., Linnington, H., Lassmann, H. & Meyermann, R. Cellular immune reactivity within the CNS. Trends Neurosci.9, 271–277 (1986). Article Google Scholar
Hickey, W.F. Migration of hematogenous cells through the blood–brain barrier and the initiation of CNS inflammation. Brain Pathol.1, 97–105 (1991). ArticleCASPubMed Google Scholar
Brabb, T. et al. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J. Exp. Med.192, 871–880 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tompkins, S.M. et al. De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J. Immunol.168, 4173–4183 (2002). ArticleCASPubMed Google Scholar
McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H. & Miller, S.D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med.11, 335–339 (2005). ArticleCASPubMed Google Scholar
Kawakami, N. et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med.199, 185–197 (2004). ArticleCASPubMedPubMed Central Google Scholar
Raine, C. The lesion in multiple sclerosis and chronic relapsing experimental allergic encephalomyelitis: a structural comparison. in Multiple Sclerosis: Clinical and Pathogenetic Basis (eds. Raine, C.S., McFarland, H.F. & Tourtellotte, W.W.) 243–286 (Chapman & Hall, Londan, 1997). Google Scholar
Stromnes, I.M. & Goverman, J.M. Passive induction of experimental allergic encephalomyelitis. Nat. Protocols doi 10.1038/nprot.2006.284 (2006).
Sobel, R.A. Genetic and epigenetic influence on EAE phenotypes induced with different encephalitogenic peptides. J. Neuroimmunol.108, 45–52 (2000). ArticleCASPubMed Google Scholar
Berger, T. et al. Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Lab Invest.76, 355–364 (1997). CASPubMed Google Scholar
Linington, C., Bradl, M., Lassmann, H., Brunner, C. & Vass, K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am. J. Pathol.130, 443–454 (1988). CASPubMedPubMed Central Google Scholar
Waksman, B.H. & Adams, R.D. A comparative study of experimental allergic neuritis in the rabbit, guinea pig, and mouse. J. Neuropathol. Exp. Neurol.15, 293–334 (1956). ArticleCASPubMed Google Scholar
Waksman, B.H. The distribution of experimental auto-allergic lesions. Its relation to the distribution of small veins. Am. J. Pathol.37, 673–693 (1960). CASPubMedPubMed Central Google Scholar
Rose, L.M., Richards, T. & Alvord, E.C., Jr. Experimental allergic encephalomyelitis (EAE) in nonhuman primates: a model of multiple sclerosis. Lab. Anim. Sci.44, 508–512 (1994). CASPubMed Google Scholar
Genain, C.P. & Hauser, S.L. Experimental allergic encephalomyelitis in the New World monkey Callithrix jacchus. Immunol. Rev.183, 159–172 (2001). ArticleCASPubMed Google Scholar
t Hart, B.A. et al. Modelling of multiple sclerosis: lessons learned in a non-human primate. Lancet Neurol.3, 588–597 (2004). Article Google Scholar
Lebar, R., Boutry, J.M., Vincent, C., Robineaux, R. & Voisin, G.A. Studies on autoimmune encephalomyelitis in the guinea pig. II. An in vitro investigation on the nature, properties, and specificity of the serum-demyelinating factor. J. Immunol.116, 1439–1446 (1976). CASPubMed Google Scholar
Genain, C.P. et al. Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate 96, 2966–2974 (1995).
Schluesener, H.J., Sobel, R.A., Linington, C. & Weiner, H.L. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J. Immunol.139, 4016–4021 (1987). CASPubMed Google Scholar
Adelmann, M. et al. The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat. J. Neuroimmunol.63, 17–27 (1995). ArticleCASPubMed Google Scholar
Stefferl, A. et al. Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the “resistant” Brown Norway rat: disease susceptibility is determined by MHC and MHC-linked effects on the B cell response. J. Immunol.163, 40–49 (1999). CASPubMed Google Scholar
Iglesias, A., Bauer, J., Litzenburger, T., Schubart, A. & Linington, C. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia36, 220–234 (2001). ArticleCASPubMed Google Scholar
Morris-Downes, M.M. et al. Pathological and regulatory effects of anti-myelin antibodies in experimental allergic encephalomyelitis in mice. J. Neuroimmunol.125, 114–124 (2002). ArticleCASPubMed Google Scholar
Abdul-Majid, K.B. et al. Fc receptors are critical for autoimmune inflammatory damage to the central nervous system in experimental autoimmune encephalomyelitis. Scand. J. Immunol.55, 70–81 (2002). ArticleCASPubMed Google Scholar
Oliver, A.R., Lyon, G.M. & Ruddle, N.H. Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune encephalomyelitis by different mechanisms in C57BL/6 mice. J. Immunol.171, 462–468 (2003). ArticleCASPubMed Google Scholar
Tsunoda, I., Kuang, L.Q., Theil, D.J. & Fujinami, R.S. Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing-remitting and progressive forms of EAE in H2s mouse strains. Brain Pathol.10, 402–418 (2000). ArticleCASPubMed Google Scholar
Haase, C.G. et al. The fine specificity of the myelin oligodendrocyte glycoprotein autoantibody response in patients with multiple sclerosis and normal healthy controls. J. Neuroimmunol.114, 220–225 (2001). ArticleCASPubMed Google Scholar
O'Connor, K.C. et al. Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J. Immunol.175, 1974–1982 (2005). ArticleCASPubMed Google Scholar
Storch, M.K. et al. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol.8, 681–694 (1998). ArticleCASPubMed Google Scholar
Butterfield, R.J. et al. Identification of genetic loci controlling the characteristics and severity of brain and spinal cord lesions in experimental allergic encephalomyelitis. Am. J. Pathol.157, 637–645 (2000). ArticleCASPubMedPubMed Central Google Scholar
Encinas, J.A. & Kuchroo, V.K. Mapping and identification of autoimmunity genes. Curr. Opin. Immunol.12, 691–697 (2000). ArticleCASPubMed Google Scholar
Becanovic, K., Jagodic, M., Wallstrom, E. & Olsson, T. Current gene-mapping strategies in experimental models of multiple sclerosis. Scand. J. Immunol.60, 39–51 (2004). ArticleCASPubMed Google Scholar
Brabb, T. et al. Triggers of autoimmune disease in a murine T-cell receptor transgenic model for multiple sclerosis. J. Immunol.159, 497–507 (1997). CASPubMed Google Scholar
Teuscher, C. et al. Gender, age, and season at immunization uniquely influence the genetic control of susceptibility to histopathological lesions and clinical signs of experimental allergic encephalomyelitis: implications for the genetics of multiple sclerosis. Am. J. Pathol.165, 1593–1602 (2004). ArticlePubMedPubMed Central Google Scholar
Levine, S., Wenk, E.J., Devlin, H.B., Pieroni, R.E. & Levine, L. Hyperacute allergic encephalomyelitis: adjuvant effect of pertussis vaccines and extracts. J. Immunol.97, 363–368 (1966). CASPubMed Google Scholar
Smith, M.E., Eller, N.L., McFarland, H.F., Racke, M.K. & Raine, C.S. Age dependence of clinical and pathological manifestations of autoimmune demyelination. Implications for multiple sclerosis. Am. J. Pathol.155, 1147–1161 (1999). ArticleCASPubMedPubMed Central Google Scholar
Maatta, J.A., Nygardas, P.T. & Hinkkanen, A.E. Enhancement of experimental autoimmune encephalomyelitis severity by ultrasound emulsification of antigen/adjuvant in distinct strains of mice. Scand. J. Immunol.51, 87–90 (2000). ArticleCASPubMed Google Scholar
Fillmore, P.D. et al. Genetic analysis of the influence of neuroantigen-complete Freund's adjuvant emulsion structures on the sexual dimorphism and susceptibility to experimental allergic encephalomyelitis. Am. J. Pathol.163, 1623–1632 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sakuma, H. et al. Clinicopathological study of a myelin oligodendrocyte glycoprotein-induced demyelinating disease in LEW.1AV1 rats. Brain127, 2201–2213 (2004). ArticlePubMed Google Scholar
Muller, D.M., Pender, M.P. & Greer, J.M. A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol. (Berl.)100, 174–182 (2000). ArticleCAS Google Scholar
Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med.197, 1073–1081 (2003). ArticleCASPubMedPubMed Central Google Scholar
Huseby, E.S. et al. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med.194, 669–676 (2001). ArticleCASPubMedPubMed Central Google Scholar
Krakowski, M. & Owens, T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur. J. Immunol.26, 1641–1646 (1996). ArticleCASPubMed Google Scholar
Willenborg, D.O., Fordham, S., Bernard, C.C., Cowden, W.B. & Ramshaw, I.A. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol.157, 3223–3227 (1996). CASPubMed Google Scholar
Abromson-Leeman, S. et al. T-cell properties determine disease site, clinical presentation, and cellular pathology of experimental autoimmune encephalomyelitis. Am. J. Pathol.165, 1519–1533 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wensky, A.K. et al. IFN-gamma determines distinct clinical outcomes in autoimmune encephalomyelitis. J. Immunol.174, 1416–1423 (2005). ArticleCASPubMed Google Scholar
Engelhardt, B. & Ransohoff, R.M. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol.26, 485–495 (2005). ArticleCASPubMed Google Scholar
Weiner, H.L. et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol.12P809-37, 809–837 (1994). Article Google Scholar
Furtado, G.C. et al. Regulatory T cells in spontaneous autoimmune encephalomyelitis. Immunol. Rev.182, 122–134 (2001). ArticleCASPubMed Google Scholar
Sewell, D.L., Reinke, E.K., Hogan, L.H., Sandor, M. & Fabry, Z. Immunoregulation of CNS autoimmunity by helminth and mycobacterial infections. Immunol. Lett.82, 101–110 (2002). ArticleCASPubMed Google Scholar
Kohm, A.P., Carpentier, P.A. & Miller, S.D. Regulation of experimental autoimmune encephalomyelitis (EAE) by CD4+CD25+ regulatory T cells. Novartis Found. Symp.252, 45–52 discussion 52–44, 106–114 (2003). CASPubMed Google Scholar
Whitacre, C.C. et al. Regulation of autoreactive T cell function by oral tolerance to self-antigens. Ann. NY Acad. Sci.1029, 172–179 (2004). ArticleCASPubMed Google Scholar
Sriram, S. & Steiner, I. Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann. Neurol.58, 939–945 (2005). ArticleCASPubMed Google Scholar
Steinman, L. & Zamvil, S.S. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol.60, 12–21 (2006). ArticleCASPubMed Google Scholar
Friese, M.A. et al. The value of animal models for drug development in multiple sclerosis. Brain129, 1940–1952 (2006). ArticlePubMed Google Scholar
Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell72, 551–560 (1993). ArticleCASPubMed Google Scholar
Lafaille, J.J., Nagashima, K., Katsuki, M. & Tonegawa, S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell78, 399–408 (1994). ArticleCASPubMed Google Scholar
Liu, G.Y. et al. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity3, 407–415 (1995). ArticleCASPubMed Google Scholar
Waldner, H., Whitters, M.J., Sobel, R.A., Collins, M. & Kuchroo, V.K. Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor 97, 3412–3417 (2000).
Zhou, S.R., Moscarello, M.A. & Whitaker, J.N. The effects of citrullination or variable amino-terminus acylation on the encephalitogenicity of human myelin basic protein in the PL/J mouse. J. Neuroimmunol.62, 147–152 (1995). ArticleCASPubMed Google Scholar
Nicholas, A.P., Sambandam, T., Echols, J.D. & Barnum, S.R. Expression of citrullinated proteins in murine experimental autoimmune encephalomyelitis. J. Comp. Neurol.486, 254–266 (2005). ArticleCASPubMed Google Scholar
Raijmakers, R. et al. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis. J. Comp. Neurol.486, 243–253 (2005). ArticlePubMed Google Scholar
Lassmann, H. & Ransohoff, R.M. The CD4-Th1 model for multiple sclerosis: a crucial re-appraisal. Trends Immunol.25, 132–137 (2004). ArticleCASPubMed Google Scholar
Goverman, J., Perchellet, A. & Huseby, E.S. The role of CD8(+) T cells in multiple sclerosis and its animal models. Curr. Drug Targets Inflamm. Allergy4, 239–245 (2005). ArticleCASPubMed Google Scholar
Friese, M.A. & Fugger, L. Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain128, 1747–1763 (2005). ArticlePubMed Google Scholar
McDole, J., Johnson, A.J. & Pirko, I. The role of CD8+ T-cells in lesion formation and axonal dysfunction in multiple sclerosis. Neurol. Res.28, 256–261 (2006). ArticleCASPubMed Google Scholar
Sun, D. et al. Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol.166, 7579–7587 (2001). ArticleCASPubMed Google Scholar
Ford, M.L. & Evavold, B.D. Specificity, magnitude, and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis. Eur. J. Immunol.35, 76–85 (2005). ArticleCASPubMed Google Scholar
Huseby, E.S., Ohlen, C. & Goverman, J. Cutting edge: myelin basic protein-specific cytotoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice. J. Immunol.163, 1115–1118 (1999). CASPubMed Google Scholar
Amor, S. et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J. Immunol.153, 4349–4356 (1994). CASPubMed Google Scholar
Elliott, E.A. et al. Treatment of experimental encephalomyelitis with a novel chimeric fusion protein of myelin basic protein and proteolipid protein. J. Clin. Invest.98, 1602–1612 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lublin, F.D. Delayed, relapsing experimental allergic encephalomyelitis in mice. Role of adjuvants and pertussis vaccine. J. Neurol. Sci.57, 105–110 (1982). ArticleCASPubMed Google Scholar
Tsunoda, I. et al. Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol.9, 481–493 (1999). ArticleCASPubMed Google Scholar
Segal, B.M., Chang, J.T. & Shevach, E.M. CpG oligonucleotides are potent adjuvants for the activation of autoreactive encephalitogenic T cells in vivo. J. Immunol.164, 5683–5688 (2000). ArticleCASPubMed Google Scholar
Lorentzen, J.C. et al. Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant. J. Neuroimmunol.63, 193–205 (1995). ArticleCASPubMed Google Scholar
Lenz, D.C., Wolf, N.A. & Swanborg, R.H. Strain variation in autoimmunity: attempted tolerization of DA rats results in the induction of experimental autoimmune encephalomyelitis. J. Immunol.163, 1763–1768 (1999). CASPubMed Google Scholar
Stosic-Grujicic, S., Ramic, Z., Bumbasirevic, V., Harhaji, L. & Mostarica-Stojkovic, M. Induction of experimental autoimmune encephalomyelitis in Dark Agouti rats without adjuvant. Clin. Exp. Immunol.136, 49–55 (2004). ArticleCASPubMedPubMed Central Google Scholar
Driscoll, B.F., Kies, M.W. & Alvord, E.C., Jr. Protection against experimental allergic encephalomyelitis with peptides derived from myelin basic protein: presence of intact encephalitogenic site is essential. J. Immunol.117, 110–114 (1976). CASPubMed Google Scholar
O'Neill, J.K., Baker, D. & Turk, J.L. Inhibition of chronic relapsing experimental allergic encephalomyelitis in the Biozzi AB/H mouse. J. Neuroimmunol.41, 177–187 (1992). ArticleCASPubMed Google Scholar
Marusic, S. & Tonegawa, S. Tolerance induction and autoimmune encephalomyelitis amelioration after administration of myelin basic protein-derived peptide. J. Exp. Med.186, 507–515 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bernard, C.C. & Carnegie, P.R. Experimental autoimmune encephalomyelitis in mice: immunologic response to mouse spinal cord and myelin basic proteins. J. Immunol.114, 1537–1540 (1975). CASPubMed Google Scholar
Donovan, J. & Brown, P. Anesthesia. In Current Protocols in Immunology Vol. 1 (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 1.4.1–1.4.5 (John Wiley & Sons, Hoboken, 1994). Google Scholar
Hedenqvist, P. & Hellebrekers, L.J. Laboratory animal analgesia, anesthesia, and euthanasia. in Handbook of Laboratory Animal Science: Essential Principles and Practices 2nd edn., 2 Vol. 1 (eds. Hau, J. & van Hoosier, G.L., Jr.) 413–455 (CRC Press, Boca Raton, FL, 2003). Google Scholar
Otto, K. Anesthesia, analgesia and euthanasia. In The Laboratory Mouse (eds. Hedrich, H. & Bullock, G.) 555–569 (Elsevier Academic Press, Amsterdam, 2004). Chapter Google Scholar
Cooper, H.M. & Patterson, Y. Production of antibodies. In Current Protocols in Immunology Vol. 1 (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 2.4.1–2.4.9 (John Wiley & Sons, Hoboken, 1994). Google Scholar
Bischof, F. et al. A structurally available encephalitogenic epitope of myelin oligodendrocyte glycoprotein specifically induces a diversified pathogenic autoimmune response. J. Immunol.173, 600–606 (2004). ArticleCASPubMed Google Scholar
Matejuk, A., Hopke, C., Vandenbark, A.A., Hurn, P.D. & Offner, H. Middle-age male mice have increased severity of experimental autoimmune encephalomyelitis and are unresponsive to testosterone therapy. J. Immunol.174, 2387–2395 (2005). ArticleCASPubMed Google Scholar
Begolka, W.S., Vanderlugt, C.L., Rahbe, S.M. & Miller, S.D. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J. Immunol.161, 4437–4446 (1998). CASPubMed Google Scholar
Hofstetter, H.H. et al. Does the frequency and avidity spectrum of the neuroantigen-specific T cells in the blood mirror the autoimmune process in the central nervous system of mice undergoing experimental allergic encephalomyelitis? J. Immunol.174, 4598–4605 (2005). ArticleCASPubMed Google Scholar
Lehmann, P.V., Sercarz, E.E., Forsthuber, T., Dayan, C.M. & Gammon, G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol. Today14, 203–208 (1993). ArticleCASPubMed Google Scholar
Tuohy, V.K., Fritz, R.B. & Ben-Nun, A. Self-determinants in autoimmune demyelinating disease: changes in T-cell response specificity. Curr. Opin. Immunol.6, 887–891 (1994). ArticleCASPubMed Google Scholar
Miller, S.D. & Eagar, T.N. Functional role of epitope spreading in the chronic pathogenesis of autoimmune and virus-induced demyelinating diseases. Adv. Exp. Med. Biol.490, 99–107 (2001). ArticleCASPubMed Google Scholar
Zamvil, S.S. et al. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature324, 258–260 (1986). ArticleCASPubMed Google Scholar
Urban, J.L. et al. Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy. Cell54, 577–592 (1988). ArticleCASPubMed Google Scholar
Tuohy, V.K., Lu, Z., Sobel, R.A., Laursen, R.A. & Lees, M.B. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J. Immunol.142, 1523–1527 (1989). CASPubMed Google Scholar
Greer, J.M., Kuchroo, V.K., Sobel, R.A. & Lees, M.B. Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178–191) for SJL mice. J. Immunol.149, 783–788 (1992). CASPubMed Google Scholar
Kono, D.H. et al. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J. Exp. Med.168, 213–227 (1988). ArticleCASPubMed Google Scholar
Fritz, R.B. & McFarlin, D.E. Encephalitogenic epitopes of myelin basic protein. Chem. Immunol.46, 101–125 (1989). ArticleCASPubMed Google Scholar
Sakai, K. et al. Prevention of experimental encephalomyelitis with peptides that block interaction of T cells with major histocompatibility complex proteins. Proc. Natl. Acad. Sci. USA86, 9470–9474 (1989). ArticleCASPubMedPubMed Central Google Scholar
McRae, B.L., Vanderlugt, C.L., Dal Canto, M.C. & Miller, S.D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med.182, 75–85 (1995). ArticleCASPubMed Google Scholar
Mendel, I., Kerlero de Rosbo, N. & Ben-Nun, A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur. J. Immunol.25, 1951–1959 (1995). ArticleCASPubMed Google Scholar
Maron, R. et al. Genetic susceptibility or resistance to autoimmune encephalomyelitis in MHC congenic mice is associated with differential production of pro- and anti-inflammatory cytokines. Int. Immunol.11, 1573–1580 (1999). ArticleCASPubMed Google Scholar
Amor, S., Baker, D., Groome, N. & Turk, J.L. Identification of a major encephalitogenic epitope of proteolipid protein (residues 56–70) for the induction of experimental allergic encephalomyelitis in Biozzi AB/H and nonobese diabetic mice. J. Immunol.150, 5666–5672 (1993). CASPubMed Google Scholar
Amor, S. et al. Encephalitogenic epitopes of myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi ABH (H-2Ag7) mice share an amino acid motif. J. Immunol.156, 3000–3008 (1996). CASPubMed Google Scholar
Smith, P.A. et al. Epitope spread is not critical for the relapse and progression of MOG 8-21 induced EAE in Biozzi ABH mice. J. Neuroimmunol.164, 76–84 (2005). ArticleCASPubMed Google Scholar
Greer, J.M. et al. Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J. Immunol.156, 371–379 (1996). CASPubMed Google Scholar
Abdul-Majid, K.B. et al. Screening of several H-2 congenic mouse strains identified H-2(q) mice as highly susceptible to MOG-induced EAE with minimal adjuvant requirement. J. Neuroimmunol.111, 23–33 (2000). ArticleCASPubMed Google Scholar
Cua, D.J., Hinton, D.R. & Stohlman, S.A. Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. J. Immunol.155, 4052–4059 (1995). CASPubMed Google Scholar
Voskuhl, R.R., Pitchekian-Halabi, H., MacKenzie-Graham, A., McFarland, H.F. & Raine, C.S. Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis. Ann. Neurol.39, 724–733 (1996). ArticleCASPubMed Google Scholar
Bebo, B.F., Jr. et al. Gonadal hormones influence the immune response to PLP 139-151 and the clinical course of relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol.84, 122–130 (1998). ArticleCASPubMed Google Scholar
Papenfuss, T.L. et al. Sex differences in experimental autoimmune encephalomyelitis in multiple murine strains. J. Neuroimmunol.150, 59–69 (2004). ArticleCASPubMed Google Scholar
Reddy, J. et al. Cutting edge: CD4+CD25+ regulatory T cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J. Immunol.175, 5591–5595 (2005). ArticleCASPubMed Google Scholar
Mendel Kerlero de Rosbo, N. & Ben-Nun, A. Delineation of the minimal encephalitogenic epitope within the immunodominant region of myelin oligodendrocyte glycoprotein: diverse V beta gene usage by T cells recognizing the core epitope encephalitogenic for T cell receptor V beta b and T cell receptor V beta a H-2b mice. Eur. J. Immunol.26, 2470–2479 (1996). ArticleCASPubMed Google Scholar