Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification (original) (raw)

References

  1. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
    Article CAS Google Scholar
  2. Wienholds, E. & Plasterk, R.H. MicroRNA function in animal development. FEBS Lett. 579, 5911–5922 (2005).
    Article CAS Google Scholar
  3. Kloosterman, W.P. & Plasterk, R.H. The diverse functions of microRNAs in animal development and disease. Dev. Cell. 11, 441–450 (2006).
    Article CAS PubMed Central Google Scholar
  4. Brennecke, J., Hipfner, D.R., Stark, A., Russel, R.B. & Cohen, S.M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).
    Article CAS Google Scholar
  5. Mansfield, J.H. et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat. Genet. 36, 1079–1083 (2004).
    Article CAS PubMed Central Google Scholar
  6. Koshkin, A.A. et al. LNA (locked nucleic acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).
    Article CAS Google Scholar
  7. Braasch, D.A. & Corey, D.R. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem. Biol. 8, 1–7 (2001).
    Article CAS PubMed Central Google Scholar
  8. Kurreck, J., Wyszko, E., Gillen, C. & Erdmann, V.A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 30, 1911–1918 (2002).
    Article CAS PubMed Central Google Scholar
  9. Jacobsen, N. et al. Direct isolation of poly(A)+ RNA from 4 M guanidine thiocyanate-lysed cell extracts using locked nucleic acid-oligo(T) capture. Nucleic Acids Res. 32, e64 (2004).
    Article PubMed Central Google Scholar
  10. Kauppinen, S., Vester, B. & Wengel, J. Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics. Handb. Exp. Pharmacol. 173, 405–422 (2006).
    Article CAS Google Scholar
  11. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).
    Article CAS Google Scholar
  12. Ason, B. et al. Differences in vertebrate microRNA expression. Proc. Natl. Acad. Sci. USA. 103, 14385–14389 (2006).
    Article CAS PubMed Central Google Scholar
  13. Darnell, D.K. et al. MicroRNA expression during chick embryo development. Dev. Dyn. 235, 3156–3165 (2006).
    Article CAS PubMed Central Google Scholar
  14. Kloosterman, W.P., Wienholds, E., de Bruijn, E., Kauppinen, S. & Plasterk, R.H. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29 (2006).
    Article CAS Google Scholar
  15. Wheeler, G., Ntounia-Fousara, S., Granda, B., Rathjen, T. & Dalmay, T. Identification of new central nervous system specific mouse microRNAs. FEBS Lett. 580, 2195–2200 (2006).
    Article CAS PubMed Central Google Scholar
  16. Nelson, P.T. et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12, 187–191 (2006).
    Article CAS PubMed Central Google Scholar
  17. Obernosterer, G., Leuschner, P.J., Alenius, M. & Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 12, 1161–1167 (2006).
    Article CAS PubMed Central Google Scholar
  18. Obernosterer, G., Martinez, J. & Alenius, M. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat. Protoc. 2, 1508–1514 (2007).
    Article CAS PubMed Central Google Scholar
  19. Silahtaroglu, A.N., Tommerup, N. & Vissing, H. FISHing with locked nucleic acids (LNA): evaluation of different LNA/DNA mixmers. Mol. Cell. Probes 17, 165–169 (2003).
    Article CAS PubMed Central Google Scholar
  20. Silahtaroglu, A., Pfundheller, H., Koshkin, A., Tommerup, N. & Kauppinen, S. LNA-modified oligonucleotides are highly efficient as FISH probes. Cytogenet. Genome Res. 107, 32–37 (2004).
    Article CAS PubMed Central Google Scholar
  21. Christoffersen, N.R., Silahtaroglu, A., Orom, U.A., Kauppinen, S. & Lund, A.H. miR-200b mediates post-transcriptional repression of ZFHX1B. RNA 13, 1172–1178 (2007).
    Article CAS PubMed Central Google Scholar
  22. Kerstens, H.M., Poddighe, P.J. & Hanselaar, A.G. A novel in situ hybridization signal amplification method based on the deposition of biotinylated tyramide. J. Histochem. Cytochem. 43, 347–352 (1995).
    Article CAS PubMed Central Google Scholar

Download references