Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices (original) (raw)
Egeblad, M. et al. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis. Model. Mech.1, 155–167 (2008); discussion 165. ArticlePubMedPubMed Central Google Scholar
Kedrin, D., Wyckoff, J., Sahai, E., Condeelis, J. & Segall, J.E. Imaging tumor cell movement in vivo. Current Protocols in Cell Biology Unit 19.7 (2007).
Wolf, K. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol.9, 893–904 (2007). ArticleCASPubMed Google Scholar
Weiss, P. & Garber, B. Shape and movement of mesenchyme cells as functions of the physical structure of the medium: contributions to a quantitative morphology. Proc. Natl. Acad. Sci. USA38, 264–280 (1952). ArticleCASPubMed Google Scholar
Harrison, R.G. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool.9, 787–846 (1910). Article Google Scholar
Ehrmann, R.L. & Gey, G.O. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J. Natl. Cancer Inst.16, 1375–1403 (1956). CASPubMed Google Scholar
Davis, G.E. & Camarillo, C.W. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res.224, 39–51 (1996). ArticleCASPubMed Google Scholar
Aplin, A.C., Fogel, E., Zorzi, P. & Nicosia, R.F. The aortic ring model of angiogenesis. Methods Enzymol.443, 119–136 (2008). ArticleCASPubMed Google Scholar
Liu, Y. & Senger, D.R. Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. FASEB. J.18, 457–468 (2004). ArticleCASPubMed Google Scholar
Sweeney, S.M. et al. Angiogenesis in collagen I requires alpha2beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J. Biol. Chem.278, 30516–30524 (2003). ArticleCASPubMed Google Scholar
Bayless, K.J. & Davis, G.E. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem. Biophys. Res. Commun.312, 903–913 (2003). ArticleCASPubMed Google Scholar
Koh, W., Stratman, A.N., Sacharidou, A. & Davis, G.E. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol.443, 83–101 (2008). ArticleCASPubMed Google Scholar
Nakatsu, M.N. et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc. Res.66, 102–112 (2003). ArticleCASPubMed Google Scholar
Nicosia, R.F. & Madri, J.A. The microvascular extracellular matrix. Developmental changes during angiogenesis in the aortic ring-plasma clot model. Am. J. Pathol.128, 78–90 (1987). CASPubMedPubMed Central Google Scholar
Nicosia, R.F., McCormick, J.F. & Bielunas, J. The formation of endothelial webs and channels in plasma clot culture. Scan. Electron Microsc. (Pt 2): 793–799 (1984).
Nicosia, R.F., Tchao, R. & Leighton, J. Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In vitro18, 538–549 (1982). ArticleCASPubMed Google Scholar
Nehls, V. & Drenckhahn, D. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc. Res.50, 311–322 (1995). ArticleCASPubMed Google Scholar
Nehls, V., Schuchardt, E. & Drenckhahn, D. The effect of fibroblasts, vascular smooth muscle cells, and pericytes on sprout formation of endothelial cells in a fibrin gel angiogenesis system. Microvasc. Res.48, 349–363 (1994). ArticleCASPubMed Google Scholar
Bell, S.E. et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J. Cell Sci.114 (Pt 15): 2755–2773 (2001). CASPubMed Google Scholar
Su, S.C., Mendoza, E.A., Kwak, H.I. & Bayless, K.J. Molecular profile of endothelial invasion of three-dimensional collagen matrices: insights into angiogenic sprout induction in wound healing. Am. J. Physiol.295, C1215–C1229 (2008). ArticleCAS Google Scholar
Hahn, C.N. et al. Expression profiling reveals functionally important genes and coordinately regulated signaling pathway genes during in vitro angiogenesis. Physiol. Genomics22, 57–69 (2005). ArticleCASPubMed Google Scholar
Koh, W., Mahan, R.D. & Davis, G.E. Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J. Cell Sci.121 (Pt 7): 989–1001 (2008). ArticleCASPubMed Google Scholar
Koh, W. et al. Formation of endothelial lumens requires a coordinated PKC{epsilon}-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J. Cell Sci.122 (Pt 11): 1812–1822 (2009). ArticleCASPubMedPubMed Central Google Scholar
Saunders, W.B. et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol.175, 179–191 (2006). ArticleCASPubMedPubMed Central Google Scholar
Stratman, A.N. et al. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3D collagen matrices. Blood114, 237–247 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sainson, R.C. et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB. J.19, 1027–1029 (2005). ArticleCASPubMed Google Scholar
Sainson, R.C. et al. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood111, 4997–5007 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bayless, K.J. & Davis, G.E. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J. Cell Sci.115 (Pt 6): 1123–1136 (2002). CASPubMed Google Scholar
Kamei, M., Saunders, W.B., Bayless, K.J., Dye, L., Davis, G.E. & Weinstein, B.M. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature442, 453–456 (2006). ArticleCASPubMed Google Scholar
Kang, H., Bayless, K.J. & Kaunas, R. Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices. Am. J. Physiol. Heart Circ. Physiol.295, H2087–H2097 (2008). ArticleCASPubMedPubMed Central Google Scholar
Emonard, H. et al. Interactions between fibroblasts and a reconstituted basement membrane matrix. J. Invest. Dermatol.89, 156–163 (1987). ArticleCASPubMed Google Scholar
Bikfalvi, A., Cramer, E.M., Tenza, D. & Tobelem, G. Phenotypic modulations of human umbilical vein endothelial cells and human dermal fibroblasts using two angiogenic assays. Biol. Cell72, 275–278 (1991). ArticleCASPubMed Google Scholar
Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S. & Reddi, A.H. Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res.202, 1–8 (1992). ArticleCASPubMed Google Scholar
Hoying, J.B., Boswell, C.A. & Williams, S.K. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev. Biol. Anim.32, 409–419 (1996). ArticleCASPubMed Google Scholar
Hughes, C.C. Endothelial-stromal interactions in angiogenesis. Curr. Opin. Hematol.15, 204–209 (2008). ArticlePubMed Google Scholar
Bornstein, M.B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab. Invest.7, 134–137 (1958). CASPubMed Google Scholar
Rajan, N., Habermehl, J., Cote, M.F., Doillon, C.J. & Mantovani, D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc.1, 2753–2758 (2006). ArticleCASPubMed Google Scholar
Dunlap, K.A. et al. Progesterone and placentation increase secreted phosphoprotein one (SPP1 or osteopontin) in uterine glands and stroma for histotrophic and hematotrophic support of ovine pregnancy. Biol. Reprod.79, 983–990 (2008). ArticleCASPubMedPubMed Central Google Scholar
Engelse, M.A., Laurens, N., Verloop, R.E., Koolwijk, P. & van Hinsbergh, V.W. Differential gene expression analysis of tubule forming and non-tubule forming endothelial cells: CDC42GAP as a counter-regulator in tubule formation. Angiogenesis11, 153–167 (2008). ArticleCASPubMed Google Scholar
Fisher, K.E., Pop, A., Koh, W., Anthis, N.J., Saunders, W.B. & Davis, G.E. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling. Mol. Cancer5, 69 (2006). ArticlePubMedPubMed Central Google Scholar
Kwak, H.I., Mendoza, E.A. & Bayless, K.J. ADAM17 co-purifies with TIMP-3 and modulates endothelial invasion responses in three-dimensional collagen matrices. Matrix Biol.28, 470–479 (2009). ArticleCASPubMed Google Scholar
Kim, A., Lakshman, N. & Petroll, W.M. Quantitative assessment of local collagen matrix remodeling in 3-D culture: the role of Rho kinase. Exp. Cell Res.312, 3683–3692 (2006). ArticleCASPubMedPubMed Central Google Scholar
Maciag, T., Cerundolo, J., Ilsley, S., Kelley, P.R. & Forand, R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA76, 5674–5678 (1979). ArticleCASPubMed Google Scholar
Davis, G.E., Black, S.M. & Bayless, K.J. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev. Biol. Anim.36, 513–519 (2000). ArticleCASPubMed Google Scholar
Iruela-Arispe, M.L. & Davis, G.E. Cellular and molecular mechanisms of vascular lumen formation. Dev. Cell16, 222–231 (2009). ArticleCASPubMed Google Scholar