Ishii, N. et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science316, 593–597 (2007). ArticleCAS Google Scholar
Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol.2, 62 (2006). Article Google Scholar
Hellerstein, M.K. In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu. Rev. Nutr.23, 379–402 (2003). ArticleCAS Google Scholar
Stephanopoulos, G. Metabolic fluxes and metabolic engineering. Metab. Eng.1, 1–11 (1999). ArticleCAS Google Scholar
Varma, A. & Palsson, B.O. Metabolic flux balancing: Basic concepts, scientific, and practical use. Bio/Technol.12, 994–998 (1994). ArticleCAS Google Scholar
Szyperski, T. 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q. Rev. Biophys.31, 41–106 (1998). ArticleCAS Google Scholar
Nanchen, A., Fuhrer, T. & Sauer, U. Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data: protocol and principles. Methods Mol. Biol.358, 177–197 (2007). ArticleCAS Google Scholar
Sauer, U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol.15, 58–63 (2004). ArticleCAS Google Scholar
Wiechert, W., Möllney, M., Petersen, S. & de Graaf, A.A. A universal framework for 13C metabolic flux analysis. Metab. Eng.3, 265–283 (2001). ArticleCAS Google Scholar
Fischer, E. & Sauer, U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem.270, 880–891 (2003). ArticleCAS Google Scholar
Zamboni, N., Fischer, E. & Sauer, U. FiatFlux - a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics6, 209 (2005). Article Google Scholar
Marx, A., de Graaf, A.A., Wiechert, W., Eggeling, L. & Sahm, H. Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotech. Bioeng.49, 111–129 (1996). ArticleCAS Google Scholar
Fischer, E., Zamboni, N. & Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem.325, 308–316 (2004). ArticleCAS Google Scholar
Emmerling, M. et al. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli . J. Bacteriol.184, 152–164 (2002). ArticleCAS Google Scholar
Dauner, M. & Sauer, U. GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Prog.16, 642–649 (2000). ArticleCAS Google Scholar
Nöh, K. et al. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J. Biotechnol.129, 249–267 (2007). Article Google Scholar
van Winden, W.A. et al. Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res.5, 559–568 (2005). ArticleCAS Google Scholar
Yuan, J., Fowler, W.U., Kimball, E., Lu, W. & Rabinowitz, J.D. Kinetic flux profiling of nitrogen assimilation in Escherichia coli . Nat. Chem. Biol.2, 529–530 (2006). ArticleCAS Google Scholar
Schaub, J., Mauch, K. & Reuss, M. Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol. Bioeng.99, 1170–1185 (2008). ArticleCAS Google Scholar
Hua, Q., Yang, C., Baba, T., Mori, H. & Shimizu, K. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol.185, 7053–7067 (2003). ArticleCAS Google Scholar
Fischer, E. & Sauer, U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet.37, 636–640 (2005). ArticleCAS Google Scholar
Christensen, B., Gombert, A.K. & Nielsen, J. Analysis of flux estimates based on 13C-labeling experiments. Eur. J. Biochem.269, 2795–2800 (2002). ArticleCAS Google Scholar
Wittmann, C., Kiefer, P. & Zelder, O. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol.70, 7277–7287 (2004). ArticleCAS Google Scholar
Hellerstein, M.K. New stable isotope-mass spectrometric techniques for measuring fluxes through intact metabolic pathways in mammalian systems: introduction of moving pictures into functional genomics and biochemical phenotyping. Metab. Eng.6, 85–100 (2004). ArticleCAS Google Scholar
Schwender, J. Metabolic flux analysis as a tool in metabolic engineering of plants. Curr. Opin. Biotechnol.19, 131–137 (2008). ArticleCAS Google Scholar
Wittmann, C. Metabolic flux analysis using mass spectrometry. Adv. Biochem. Eng. Biotechnol.74, 39–64 (2002). CASPubMed Google Scholar
Gunnarsson, N., Mortensen, U.H., Sosio, M. & Nielsen, J. Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species. Mol. Microbiol.52, 895–902 (2004). ArticleCAS Google Scholar
Fischer, E. & Sauer, U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli . J. Biol. Chem.278, 46446–46451 (2003). ArticleCAS Google Scholar
Blank, L.M., Kuepfer, L. & Sauer, U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome. Biol.6, R49 (2005). Article Google Scholar
Schütz, R., Küpfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli . Mol. Syst. Biol.3, 119 (2007). Google Scholar
Feist, A.M. & Palsson, B.O. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli . Nat. Biotechnol.26, 659–667 (2008). ArticleCAS Google Scholar
Szyperski, T. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem.232, 433–448 (1995). ArticleCAS Google Scholar
Möllney, M., Wiechert, W., Kownatzki, D. & de Graaf, A.A. Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol. Bioeng.66, 86–103 (1999). Article Google Scholar
Wiechert, W., Siefke, C., de Graaf, A.A. & Marx, A. Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Biotechnol. Bioeng.55, 118–135 (1997). ArticleCAS Google Scholar
Antoniewicz, M.R., Kelleher, J.K. & Stephanopoulos, G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng.9, 68–86 (2007). ArticleCAS Google Scholar
van Winden, W.A., Heijnen, J.J. & Verheijen, P.J. Cumulative bondomers: a new concept in flux analysis from 2D [13C,1H] COSY NMR data. Biotechnol. Bioeng.80, 731–745 (2002). ArticleCAS Google Scholar
Rantanen, A. et al. An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics9, 266 (2008). Article Google Scholar
Zamboni, N. et al. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis . Biotechnol. Bioeng.89, 219–232 (2005). ArticleCAS Google Scholar
Schaub, J., Schiesling, C., Reuss, M. & Dauner, M. Integrated sampling procedure for metabolome analysis. Biotechnol. Prog.22, 1434–1442 (2006). ArticleCAS Google Scholar
Antoniewicz, M.R. et al. Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab. Eng.9, 277–292 (2007). ArticleCAS Google Scholar
Monod, J. Récherches sur la croissance des cultures bactériennnes (Hermann et Compagnie Ed, Paris, 1942). Google Scholar
Kleijn, R.J. et al. 13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ratio in Penicillium chrysogenum . Appl. Environ. Microbiol.72, 4743–4754 (2006). ArticleCAS Google Scholar
Petersen, S. et al. In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum . J. Biol. Chem.275, 35932–35941 (2000). ArticleCAS Google Scholar
Stryer, L. Biochemistry 4th edn. 483–491 (Freeman and Company, New York, 1995).
Dauner, M. et al. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl. Environ. Microbiol.68, 1760–1771 (2002). ArticleCAS Google Scholar
Blank, L.M., Lehmbeck, F. & Sauer, U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res.5, 545–558 (2005). ArticleCAS Google Scholar
Fischer, E., Zamboni, N. & Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem.325, 308–316 (2004). ArticleCAS Google Scholar
Kleijn, R.J. et al. Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived C-13-labelling data. FEMS Yeast Res.7, 216–231 (2007). ArticleCAS Google Scholar
Kummel, A., Panke, S. & Heinemann, M. Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics7, 512 (2006). Article Google Scholar
Herrgard, M.J. et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol.26, 1155–1160 (2008). ArticleCAS Google Scholar
Oh, Y.K., Palsson, B.O., Park, S.M., Schilling, C.H. & Mahadevan, R. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J. Biol. Chem.282, 28791–28799 (2007). ArticleCAS Google Scholar
Feist, A.M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol.3, 121 (2007). Article Google Scholar
Schilling, C.H. et al. Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol.184, 4582–4593 (2002). ArticleCAS Google Scholar
Oliveira, A.P., Nielsen, J. & Forster, J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol.5, 39 (2005). Article Google Scholar
Cannizzaro, C., Christensen, B., Nielsen, J. & von Stockar, U. Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry. Metab. Eng.6, 340–351 (2004). ArticleCAS Google Scholar
Fuhrer, T., Fischer, E. & Sauer, U. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol.187, 1581–1590 (2005). ArticleCAS Google Scholar
Schmidt, K., Carlsen, M., Nielsen, J. & Villadsen, J. Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng.55, 831–840 (1997). ArticleCAS Google Scholar
Arita, M. In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. Genome Res.13, 2455–2466 (2003). ArticleCAS Google Scholar
Pitkänen, E., Åkerlund, A., Rantanen, A., Jouhten, P. & Ukkonen, E. ReMatch: a web-based tool to construct, store and share stoichiometric metabolic models with carbon maps for metabolic flux analysis. J. Integr. Bioinform.5, 102 (2008). Article Google Scholar
Dauner, M., Bailey, J.E. & Sauer, U. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis . Biotechnol. Bioeng.76, 144–156 (2001). ArticleCAS Google Scholar
Pramanik, J. & Keasling, J.D. Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol. Bioeng.60, 230–238 (1998). ArticleCAS Google Scholar
Guy, R.D., Fogel, M.L. & Berry, J.A. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol.101, 37–47 (1993). ArticleCAS Google Scholar
Antoniewicz, M.R., Kelleher, J.K. & Stephanopoulos, G. Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal. Chem.79, 7554–7559 (2007). ArticleCAS Google Scholar
Zamboni, N. in Topics in Current Genetics (eds. J. Nielsen & M. Jewett) (Springer, Berlin, 2007). Google Scholar
Isermann, N. & Wiechert, W. Metabolic isotopomer labeling systems. Part II: structural flux identifiability analysis. Math. Biosci.183, 175–214 (2003). ArticleCAS Google Scholar
Rantanen, A., Mielikainen, T., Rousu, J., Maaheimo, H. & Ukkonen, E. Planning optimal measurements of isotopomer distributions for estimation of metabolic fluxes. Bioinformatics22, 1198–1206 (2006). ArticleCAS Google Scholar
Sambrook, T. & Russell, D.W. in Molecular Cloning: A Laboratory ManualVol 3, A2.2 (Cold Spring Harbor Press, Cold Spring Harbor, NY, 2001). Google Scholar
Bailey, J.E. & Ollis, D.F. in Biochemical Engineering Fundamentals 2nd edn. 373–456 (McGraw-Hill, Singapore, 1986). Google Scholar
Wahl, S.A., Dauner, M. & Wiechert, W. New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol. Bioeng.85, 259–268 (2004). ArticleCAS Google Scholar
Pázman, A. Nonlinear Statistical Models (Kluwer Academic Publishing, New York, 1993). Book Google Scholar
Gottschalk, G. Bacterial Metabolism 2nd edn. 185 (Springer-Verlag, New York, 1986). Book Google Scholar
Fong, S.S., Nanchen, A., Palsson, B.O. & Sauer, U. Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J. Biol. Chem.281, 8024–8033 (2006). ArticleCAS Google Scholar
Wiechert, W. & de Graaf, A.A. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol. Bioeng.55, 101–117 (1997). ArticleCAS Google Scholar
Wiechert, W., Mollney, M., Isermann, N., Wurzel, M. & de Graaf, A.A. Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol. Bioeng.66, 69–85 (1999). ArticleCAS Google Scholar