13C-based metabolic flux analysis (original) (raw)

References

  1. Ishii, N. et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597 (2007).
    Article CAS Google Scholar
  2. Sauer, U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006).
    Article Google Scholar
  3. Hellerstein, M.K. In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu. Rev. Nutr. 23, 379–402 (2003).
    Article CAS Google Scholar
  4. Stephanopoulos, G. Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 1–11 (1999).
    Article CAS Google Scholar
  5. Varma, A. & Palsson, B.O. Metabolic flux balancing: Basic concepts, scientific, and practical use. Bio/Technol. 12, 994–998 (1994).
    Article CAS Google Scholar
  6. Wiechert, W. 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001).
    Article CAS Google Scholar
  7. Szyperski, T. 13C-NMR, MS and metabolic flux balancing in biotechnology research. Q. Rev. Biophys. 31, 41–106 (1998).
    Article CAS Google Scholar
  8. Nanchen, A., Fuhrer, T. & Sauer, U. Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data: protocol and principles. Methods Mol. Biol. 358, 177–197 (2007).
    Article CAS Google Scholar
  9. Sauer, U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol. 15, 58–63 (2004).
    Article CAS Google Scholar
  10. Wiechert, W., Möllney, M., Petersen, S. & de Graaf, A.A. A universal framework for 13C metabolic flux analysis. Metab. Eng. 3, 265–283 (2001).
    Article CAS Google Scholar
  11. Fischer, E. & Sauer, U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem. 270, 880–891 (2003).
    Article CAS Google Scholar
  12. Zamboni, N., Fischer, E. & Sauer, U. FiatFlux - a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6, 209 (2005).
    Article Google Scholar
  13. Marx, A., de Graaf, A.A., Wiechert, W., Eggeling, L. & Sahm, H. Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotech. Bioeng. 49, 111–129 (1996).
    Article CAS Google Scholar
  14. Fischer, E., Zamboni, N. & Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem. 325, 308–316 (2004).
    Article CAS Google Scholar
  15. Emmerling, M. et al. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli . J. Bacteriol. 184, 152–164 (2002).
    Article CAS Google Scholar
  16. Dauner, M. & Sauer, U. GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol. Prog. 16, 642–649 (2000).
    Article CAS Google Scholar
  17. Nöh, K. et al. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J. Biotechnol. 129, 249–267 (2007).
    Article Google Scholar
  18. van Winden, W.A. et al. Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res. 5, 559–568 (2005).
    Article CAS Google Scholar
  19. Yuan, J., Fowler, W.U., Kimball, E., Lu, W. & Rabinowitz, J.D. Kinetic flux profiling of nitrogen assimilation in Escherichia coli . Nat. Chem. Biol. 2, 529–530 (2006).
    Article CAS Google Scholar
  20. Schaub, J., Mauch, K. & Reuss, M. Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol. Bioeng. 99, 1170–1185 (2008).
    Article CAS Google Scholar
  21. Hua, Q., Yang, C., Baba, T., Mori, H. & Shimizu, K. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185, 7053–7067 (2003).
    Article CAS Google Scholar
  22. Fischer, E. & Sauer, U. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37, 636–640 (2005).
    Article CAS Google Scholar
  23. Christensen, B., Gombert, A.K. & Nielsen, J. Analysis of flux estimates based on 13C-labeling experiments. Eur. J. Biochem. 269, 2795–2800 (2002).
    Article CAS Google Scholar
  24. Wittmann, C., Kiefer, P. & Zelder, O. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70, 7277–7287 (2004).
    Article CAS Google Scholar
  25. Hellerstein, M.K. New stable isotope-mass spectrometric techniques for measuring fluxes through intact metabolic pathways in mammalian systems: introduction of moving pictures into functional genomics and biochemical phenotyping. Metab. Eng. 6, 85–100 (2004).
    Article CAS Google Scholar
  26. Schwender, J. Metabolic flux analysis as a tool in metabolic engineering of plants. Curr. Opin. Biotechnol. 19, 131–137 (2008).
    Article CAS Google Scholar
  27. Wittmann, C. Metabolic flux analysis using mass spectrometry. Adv. Biochem. Eng. Biotechnol. 74, 39–64 (2002).
    CAS PubMed Google Scholar
  28. Gunnarsson, N., Mortensen, U.H., Sosio, M. & Nielsen, J. Identification of the Entner-Doudoroff pathway in an antibiotic-producing actinomycete species. Mol. Microbiol. 52, 895–902 (2004).
    Article CAS Google Scholar
  29. Fischer, E. & Sauer, U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli . J. Biol. Chem. 278, 46446–46451 (2003).
    Article CAS Google Scholar
  30. Blank, L.M., Kuepfer, L. & Sauer, U. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome. Biol. 6, R49 (2005).
    Article Google Scholar
  31. Schütz, R., Küpfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli . Mol. Syst. Biol. 3, 119 (2007).
    Google Scholar
  32. Feist, A.M. & Palsson, B.O. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli . Nat. Biotechnol. 26, 659–667 (2008).
    Article CAS Google Scholar
  33. Szyperski, T. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232, 433–448 (1995).
    Article CAS Google Scholar
  34. Möllney, M., Wiechert, W., Kownatzki, D. & de Graaf, A.A. Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol. Bioeng. 66, 86–103 (1999).
    Article Google Scholar
  35. Wiechert, W., Siefke, C., de Graaf, A.A. & Marx, A. Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. Biotechnol. Bioeng. 55, 118–135 (1997).
    Article CAS Google Scholar
  36. Antoniewicz, M.R., Kelleher, J.K. & Stephanopoulos, G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab. Eng. 9, 68–86 (2007).
    Article CAS Google Scholar
  37. van Winden, W.A., Heijnen, J.J. & Verheijen, P.J. Cumulative bondomers: a new concept in flux analysis from 2D [13C,1H] COSY NMR data. Biotechnol. Bioeng. 80, 731–745 (2002).
    Article CAS Google Scholar
  38. Rantanen, A. et al. An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics 9, 266 (2008).
    Article Google Scholar
  39. Zamboni, N. et al. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis . Biotechnol. Bioeng. 89, 219–232 (2005).
    Article CAS Google Scholar
  40. Schaub, J., Schiesling, C., Reuss, M. & Dauner, M. Integrated sampling procedure for metabolome analysis. Biotechnol. Prog. 22, 1434–1442 (2006).
    Article CAS Google Scholar
  41. Antoniewicz, M.R. et al. Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab. Eng. 9, 277–292 (2007).
    Article CAS Google Scholar
  42. Monod, J. Récherches sur la croissance des cultures bactériennnes (Hermann et Compagnie Ed, Paris, 1942).
    Google Scholar
  43. Kleijn, R.J. et al. 13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ratio in Penicillium chrysogenum . Appl. Environ. Microbiol. 72, 4743–4754 (2006).
    Article CAS Google Scholar
  44. Petersen, S. et al. In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum . J. Biol. Chem. 275, 35932–35941 (2000).
    Article CAS Google Scholar
  45. Stryer, L. Biochemistry 4th edn. 483–491 (Freeman and Company, New York, 1995).
  46. Dauner, M. et al. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl. Environ. Microbiol. 68, 1760–1771 (2002).
    Article CAS Google Scholar
  47. Blank, L.M., Lehmbeck, F. & Sauer, U. Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res. 5, 545–558 (2005).
    Article CAS Google Scholar
  48. Fischer, E., Zamboni, N. & Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem. 325, 308–316 (2004).
    Article CAS Google Scholar
  49. Kleijn, R.J. et al. Metabolic flux analysis of a glycerol-overproducing Saccharomyces cerevisiae strain based on GC-MS, LC-MS and NMR-derived C-13-labelling data. FEMS Yeast Res. 7, 216–231 (2007).
    Article CAS Google Scholar
  50. Kummel, A., Panke, S. & Heinemann, M. Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7, 512 (2006).
    Article Google Scholar
  51. Herrgard, M.J. et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26, 1155–1160 (2008).
    Article CAS Google Scholar
  52. Oh, Y.K., Palsson, B.O., Park, S.M., Schilling, C.H. & Mahadevan, R. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J. Biol. Chem. 282, 28791–28799 (2007).
    Article CAS Google Scholar
  53. Feist, A.M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).
    Article Google Scholar
  54. Schilling, C.H. et al. Genome-scale metabolic model of Helicobacter pylori 26695. J. Bacteriol. 184, 4582–4593 (2002).
    Article CAS Google Scholar
  55. Oliveira, A.P., Nielsen, J. & Forster, J. Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol. 5, 39 (2005).
    Article Google Scholar
  56. Cannizzaro, C., Christensen, B., Nielsen, J. & von Stockar, U. Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry. Metab. Eng. 6, 340–351 (2004).
    Article CAS Google Scholar
  57. Fuhrer, T., Fischer, E. & Sauer, U. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol. 187, 1581–1590 (2005).
    Article CAS Google Scholar
  58. Schmidt, K., Carlsen, M., Nielsen, J. & Villadsen, J. Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 55, 831–840 (1997).
    Article CAS Google Scholar
  59. Arita, M. In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. Genome Res. 13, 2455–2466 (2003).
    Article CAS Google Scholar
  60. Pitkänen, E., Åkerlund, A., Rantanen, A., Jouhten, P. & Ukkonen, E. ReMatch: a web-based tool to construct, store and share stoichiometric metabolic models with carbon maps for metabolic flux analysis. J. Integr. Bioinform. 5, 102 (2008).
    Article Google Scholar
  61. Dauner, M., Bailey, J.E. & Sauer, U. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis . Biotechnol. Bioeng. 76, 144–156 (2001).
    Article CAS Google Scholar
  62. Pramanik, J. & Keasling, J.D. Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol. Bioeng. 60, 230–238 (1998).
    Article CAS Google Scholar
  63. Guy, R.D., Fogel, M.L. & Berry, J.A. Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol. 101, 37–47 (1993).
    Article CAS Google Scholar
  64. Srere, P.A. Citric acid cycle redux. Trends Biochem. Sci. 15, 411–412 (1990).
    Article CAS Google Scholar
  65. Antoniewicz, M.R., Kelleher, J.K. & Stephanopoulos, G. Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal. Chem. 79, 7554–7559 (2007).
    Article CAS Google Scholar
  66. Zamboni, N. in Topics in Current Genetics (eds. J. Nielsen & M. Jewett) (Springer, Berlin, 2007).
    Google Scholar
  67. Isermann, N. & Wiechert, W. Metabolic isotopomer labeling systems. Part II: structural flux identifiability analysis. Math. Biosci. 183, 175–214 (2003).
    Article CAS Google Scholar
  68. Rantanen, A., Mielikainen, T., Rousu, J., Maaheimo, H. & Ukkonen, E. Planning optimal measurements of isotopomer distributions for estimation of metabolic fluxes. Bioinformatics 22, 1198–1206 (2006).
    Article CAS Google Scholar
  69. Sambrook, T. & Russell, D.W. in Molecular Cloning: A Laboratory Manual Vol 3, A2.2 (Cold Spring Harbor Press, Cold Spring Harbor, NY, 2001).
    Google Scholar
  70. Bailey, J.E. & Ollis, D.F. in Biochemical Engineering Fundamentals 2nd edn. 373–456 (McGraw-Hill, Singapore, 1986).
    Google Scholar
  71. Wahl, S.A., Dauner, M. & Wiechert, W. New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol. Bioeng. 85, 259–268 (2004).
    Article CAS Google Scholar
  72. Pázman, A. Nonlinear Statistical Models (Kluwer Academic Publishing, New York, 1993).
    Book Google Scholar
  73. Gottschalk, G. Bacterial Metabolism 2nd edn. 185 (Springer-Verlag, New York, 1986).
    Book Google Scholar
  74. Fong, S.S., Nanchen, A., Palsson, B.O. & Sauer, U. Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J. Biol. Chem. 281, 8024–8033 (2006).
    Article CAS Google Scholar
  75. Wiechert, W. & de Graaf, A.A. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol. Bioeng. 55, 101–117 (1997).
    Article CAS Google Scholar
  76. Wiechert, W., Mollney, M., Isermann, N., Wurzel, M. & de Graaf, A.A. Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol. Bioeng. 66, 69–85 (1999).
    Article CAS Google Scholar

Download references