Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism (original) (raw)
References
Arita, M. The metabolic world of Escherichia coli is not small. Proc. Natl. Acad. Sci. USA101, 1543–1547 (2004). ArticleCAS Google Scholar
Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet.5, 101–113 (2004). ArticleCAS Google Scholar
Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E.D. Metabolic network structure determines key aspects of functionality and regulation. Nature420, 190–193 (2002). ArticleCAS Google Scholar
Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabasi, A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli . Nature427, 839–843 (2004). ArticleCAS Google Scholar
Papin, J.A. et al. Comparison of network-based pathway analysis methods. Trends Biotechnol.22, 400–405 (2004). ArticleCAS Google Scholar
Segre, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA99, 15112–15117 (2002). ArticleCAS Google Scholar
Edwards, J.S., Ibarra, R.U. & Palsson, B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol.19, 125–130 (2001). ArticleCAS Google Scholar
Hellerstein, M.K. In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu. Rev. Nutr.23, 379–402 (2003). ArticleCAS Google Scholar
Sauer, U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol.15, 58–63 (2004). ArticleCAS Google Scholar
Csete, M.E. & Doyle, J. Bow ties, metabolism and disease. Trends Biotechnol.22, 446–450 (2004). ArticleCAS Google Scholar
Fischer, E. & Sauer, U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli . J. Biol. Chem.278, 46446–46451 (2003). ArticleCAS Google Scholar
Fischer, E. & Sauer, U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem.270, 880–891 (2003). ArticleCAS Google Scholar
Fischer, E., Zamboni, N. & Sauer, U. High-throughput metabolic flux analysis based on GC-MS derived 13C-constraints. Anal. Biochem.325, 308–316 (2004). ArticleCAS Google Scholar
Duetz, W.A. et al. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol.66, 2641–2646 (2000). ArticleCAS Google Scholar
Zamboni, N. & Sauer, U. Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis . FEMS Microbiol. Lett.226, 121–126 (2003). ArticleCAS Google Scholar
Zamboni, N. et al. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J. Bacteriol.186, 4528–4534 (2004). ArticleCAS Google Scholar
Msadek, T. When going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis . Trends Microbiol.7, 201–207 (1999). ArticleCAS Google Scholar
Servant, P., Le Coq, D. & Aymerich, S. CcpN (YqzB), a regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol. Microbiol.55, 1435–1451 (2005). ArticleCAS Google Scholar
Sauer, U. et al. Metabolic fluxes in riboflavin-producing Bacillus subtilis . Nat. Biotechnol.15, 448–452 (1997). ArticleCAS Google Scholar
Moritz, B., Striegel, K., De Graaf, A.A. & Sahm, H. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo . Eur. J. Biochem.267, 3442–3452 (2000). ArticleCAS Google Scholar
Zamboni, N. et al. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis . Biotechnol. Bioeng.89, 219–232 (2005). ArticleCAS Google Scholar
Dauner, M., Storni, T. & Sauer, U. Bacillus subtilis metabolism and energetics in carbon-limited and carbon-excess chemostat culture. J. Bacteriol.183, 7308–7317 (2001). ArticleCAS Google Scholar
Sonenshein, A.L., Hoch, J.A. & Losick, R. Bacillus subtilis and its closest relatives. From genes to cells. (ASM Press, Washington, DC, 2002).
Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science292, 504–507 (2001). ArticleCAS Google Scholar
Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature418, 387–391 (2002). ArticleCAS Google Scholar
Ibarra, R.U., Edwards, J.S. & Palsson, B.O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature420, 186–189 (2002). ArticleCAS Google Scholar
Nudler, E. & Mironov, A.S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci.29, 11–17 (2004). ArticleCAS Google Scholar
Stelling, J., Sauer, U., Szallasi, Z., Doyle III, F.J. & Doyle, J. Robustness of cellular functions. Cell118, 675–685 (2004). ArticleCAS Google Scholar
Dauner, M. & Sauer, U. Stoichiometric growth model for riboflavin-producing Bacillus subtilis . Biotechnol. Bioeng.76, 132–143 (2001). ArticleCAS Google Scholar