Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism (original) (raw)

References

  1. Arita, M. The metabolic world of Escherichia coli is not small. Proc. Natl. Acad. Sci. USA 101, 1543–1547 (2004).
    Article CAS Google Scholar
  2. Barabasi, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).
    Article CAS Google Scholar
  3. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E.D. Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193 (2002).
    Article CAS Google Scholar
  4. Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabasi, A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli . Nature 427, 839–843 (2004).
    Article CAS Google Scholar
  5. Burgard, A.P., Nikolaev, E.V., Schilling, C.H. & Maranas, C.D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004).
    Article CAS Google Scholar
  6. Papin, J.A. et al. Comparison of network-based pathway analysis methods. Trends Biotechnol. 22, 400–405 (2004).
    Article CAS Google Scholar
  7. Segre, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).
    Article CAS Google Scholar
  8. Edwards, J.S., Ibarra, R.U. & Palsson, B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130 (2001).
    Article CAS Google Scholar
  9. Hellerstein, M.K. In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu. Rev. Nutr. 23, 379–402 (2003).
    Article CAS Google Scholar
  10. Sauer, U. High-throughput phenomics: experimental methods for mapping fluxomes. Curr. Opin. Biotechnol. 15, 58–63 (2004).
    Article CAS Google Scholar
  11. Csete, M.E. & Doyle, J. Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450 (2004).
    Article CAS Google Scholar
  12. Fischer, E. & Sauer, U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli . J. Biol. Chem. 278, 46446–46451 (2003).
    Article CAS Google Scholar
  13. Fischer, E. & Sauer, U. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem. 270, 880–891 (2003).
    Article CAS Google Scholar
  14. Fischer, E., Zamboni, N. & Sauer, U. High-throughput metabolic flux analysis based on GC-MS derived 13C-constraints. Anal. Biochem. 325, 308–316 (2004).
    Article CAS Google Scholar
  15. Duetz, W.A. et al. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 66, 2641–2646 (2000).
    Article CAS Google Scholar
  16. Zamboni, N. & Sauer, U. Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis . FEMS Microbiol. Lett. 226, 121–126 (2003).
    Article CAS Google Scholar
  17. Zamboni, N. et al. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J. Bacteriol. 186, 4528–4534 (2004).
    Article CAS Google Scholar
  18. Msadek, T. When going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis . Trends Microbiol. 7, 201–207 (1999).
    Article CAS Google Scholar
  19. Servant, P., Le Coq, D. & Aymerich, S. CcpN (YqzB), a regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol. Microbiol. 55, 1435–1451 (2005).
    Article CAS Google Scholar
  20. Sauer, U. et al. Metabolic fluxes in riboflavin-producing Bacillus subtilis . Nat. Biotechnol. 15, 448–452 (1997).
    Article CAS Google Scholar
  21. Moritz, B., Striegel, K., De Graaf, A.A. & Sahm, H. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo . Eur. J. Biochem. 267, 3442–3452 (2000).
    Article CAS Google Scholar
  22. Zamboni, N. et al. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis . Biotechnol. Bioeng. 89, 219–232 (2005).
    Article CAS Google Scholar
  23. Dauner, M., Storni, T. & Sauer, U. Bacillus subtilis metabolism and energetics in carbon-limited and carbon-excess chemostat culture. J. Bacteriol. 183, 7308–7317 (2001).
    Article CAS Google Scholar
  24. Sonenshein, A.L., Hoch, J.A. & Losick, R. Bacillus subtilis and its closest relatives. From genes to cells. (ASM Press, Washington, DC, 2002).
  25. Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001).
    Article CAS Google Scholar
  26. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).
    Article CAS Google Scholar
  27. Ibarra, R.U., Edwards, J.S. & Palsson, B.O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).
    Article CAS Google Scholar
  28. Nudler, E. & Mironov, A.S. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29, 11–17 (2004).
    Article CAS Google Scholar
  29. Stelling, J., Sauer, U., Szallasi, Z., Doyle III, F.J. & Doyle, J. Robustness of cellular functions. Cell 118, 675–685 (2004).
    Article CAS Google Scholar
  30. Dauner, M. & Sauer, U. Stoichiometric growth model for riboflavin-producing Bacillus subtilis . Biotechnol. Bioeng. 76, 132–143 (2001).
    Article CAS Google Scholar

Download references