Adams, R.H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol.8, 464–478 (2007). ArticleCASPubMed Google Scholar
Staton, C.A., Reed, M.W. & Brown, N.J. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol.90, 195–221 (2009). ArticleCASPubMedPubMed Central Google Scholar
Glaser, B.M., D'Amore, P.A., Seppa, H., Seppa, S. & Schiffmann, E. Adult tissues contain chemoattractants for vascular endothelial cells. Nature288, 483–484 (1980). ArticleCASPubMed Google Scholar
Alessandri, G., Raju, K. & Gullino, P.M. Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo. Cancer Res.43, 1790–1797 (1983). CASPubMed Google Scholar
Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med.115, 453–466 (1962). ArticleCASPubMedPubMed Central Google Scholar
Wong, M.K. & Gotlieb, A.I. In vitro reendothelialization of a single-cell wound. Role of microfilament bundles in rapid lamellipodia-mediated wound closure. Lab. Invest.51, 75–81 (1984). CASPubMed Google Scholar
Gospodarowicz, D., Moran, J., Braun, D. & Birdwell, C. Clonal growth of bovine vascular endothelial cells: fibroblast growth factor as a survival agent. Proc. Natl. Acad. Sci. USA73, 4120–4124 (1976). ArticleCASPubMedPubMed Central Google Scholar
Kubota, Y., Kleinman, H.K., Martin, G.R. & Lawley, T.J. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol.107, 1589–1598 (1988). ArticleCASPubMed Google Scholar
Lawley, T.J. & Kubota, Y. Induction of morphologic differentiation of endothelial cells in culture. J. Invest. Dermatol.93, S59–S61 (1989). Article Google Scholar
Bayless, K.J., Kwak, H.I. & Su, S.C. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat. Protoc.4, 1888–1898 (2009). ArticleCASPubMed Google Scholar
Nicosia, R.F. & Ottinetti, A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev. Biol.26, 119–128 (1990). ArticleCASPubMed Google Scholar
Aplin, A.C., Fogel, E., Zorzi, P. & Nicosia, R.F. The aortic ring model of angiogenesis. Methods Enzymol.443, 119–136 (2008). ArticleCASPubMed Google Scholar
Chalupowicz, D.G., Chowdhury, Z.A., Bach, T.L., Barsigian, C. & Martinez, J. Fibrin II induces endothelial cell capillary tube formation. J. Cell Biol.130, 207–215 (1995). ArticleCASPubMed Google Scholar
Bayless, K.J. & Davis, G.E. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem. Biophys. Res. Commun.312, 903–913 (2003). ArticleCASPubMed Google Scholar
Koh, W., Stratman, A.N., Sacharidou, A. & Davis, G.E. In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol.443, 83–101 (2008). ArticleCASPubMed Google Scholar
Stratman, A.N. et al. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood114, 237–247 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gimbrone, M.A. Jr. Cotran, R.S., Leapman, S.B. & Folkman, J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst.52, 413–427 (1974). ArticlePubMed Google Scholar
Fournier, G.A., Lutty, G.A., Watt, S., Fenselau, A. & Patz, A. A corneal micropocket assay for angiogenesis in the rat eye. Invest. Ophthalmol. Vis. Sci.21, 351–354 (1981). CASPubMed Google Scholar
Auerbach, R., Kubai, L., Knighton, D. & Folkman, J. A simple procedure for the long-term cultivation of chicken embryos. Dev. Biol.41, 391–394 (1974). ArticleCASPubMed Google Scholar
Ribatti, D., Vacca, A., Roncali, L. & Dammacco, F. The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol.40, 1189–1197 (1996). CASPubMed Google Scholar
Dohle, D.S. et al. Chick ex ovo culture and ex ovo CAM assay: how it really works. J. Vis. Exp. doi:10.3791/1620 (2009).
Alajati, A. et al. Spheroid-based engineering of a human vasculature in mice. Nat. Methods5, 439–445 (2008). ArticleCASPubMed Google Scholar
Laib, A.M. et al. Spheroid-based human endothelial cell microvessel formation in vivo. Nat. Protoc.4, 1202–1215 (2009). ArticleCASPubMed Google Scholar
Eming, S.A., Brachvogel, B., Odorisio, T. & Koch, M. Regulation of angiogenesis: wound healing as a model. Prog. Histochem. Cytochem.42, 115–170 (2007). ArticleCASPubMed Google Scholar
Papenfuss, H.D., Gross, J.F., Intaglietta, M. & Treese, F.A. A transparent access chamber for the rat dorsal skin fold. Microvasc. Res.18, 311–318 (1979). ArticleCASPubMed Google Scholar
Vajkoczy, P. et al. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia1, 31–41 (1999). ArticleCASPubMedPubMed Central Google Scholar
Endrich, B., Asaishi, K., Gotz, A. & Messmer, K. Technical report—a new chamber technique for microvascular studies in unanesthetized hamsters. Res. Exp. Med. (Berl.)177, 125–134 (1980). ArticleCASPubMed Google Scholar
Swift, M.R. & Weinstein, B.M. Arterial-venous specification during development. Circ. Res.104, 576–588 (2009). ArticleCASPubMed Google Scholar
Gariano, R.F. & Gardner, T.W. Retinal angiogenesis in development and disease. Nature438, 960–966 (2005). ArticleCASPubMed Google Scholar
Fukumura, D. & Jain, R.K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res.74, 72–84 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kerbel, R.S. Tumor angiogenesis: past, present and the near future. Carcinogenesis21, 505–515 (2000). ArticleCASPubMed Google Scholar
Carmeliet, P. & Collen, D. Transgenic mouse models in angiogenesis and cardiovascular disease. J. Pathol.190, 387–405 (2000). ArticleCASPubMed Google Scholar
Naumov, G.N., Akslen, L.A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle5, 1779–1787 (2006). ArticleCASPubMed Google Scholar
Rocha, S.F. & Adams, R.H. Molecular differentiation and specialization of vascular beds. Angiogenesis12, 139–147 (2009). ArticleCASPubMed Google Scholar
Connor, K.M. et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat. Protoc.4, 1565–1573 (2009). ArticleCASPubMedPubMed Central Google Scholar
Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell137, 1124–1135 (2009). ArticleCASPubMed Google Scholar
Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature465, 483–486 (2010). ArticleCASPubMed Google Scholar
Branda, C.S. & Dymecki, S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell6, 7–28 (2004). ArticleCASPubMed Google Scholar
Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA85, 5166–5170 (1988). ArticleCASPubMedPubMed Central Google Scholar
Sauer, B. & Henderson, N. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol.2, 441–449 (1990). CASPubMed Google Scholar
Indra, A.K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res.27, 4324–4327 (1999). ArticleCASPubMedPubMed Central Google Scholar
Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis46, 74–80 (2008). ArticleCASPubMed Google Scholar
Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature465, 487–491 (2010). ArticleCASPubMed Google Scholar
Gerhardt, H. & Betsholtz, C. High-resolution in situ confocal analysis of endothelial cells. in Methods in Endothelial Cell Biology (ed. Augustin, H.G.) 313–323 (Springer-Verlag, 2004).
Aguilar, E. et al. Chapter 6. Ocular models of angiogenesis. Methods Enzymol.444, 115–158 (2008). ArticleCASPubMed Google Scholar
Fruttiger, M. et al. PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron17, 1117–1131 (1996). ArticleCASPubMed Google Scholar
Lobov, I.B. et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc. Natl. Acad. Sci. USA104, 3219–3224 (2007). ArticleCASPubMedPubMed Central Google Scholar
Laitinen, L. Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem. J.19, 225–234 (1987). ArticleCASPubMed Google Scholar
Laitinen, L., Virtanen, I. & Saxen, L. Changes in the glycosylation pattern during embryonic development of mouse kidney as revealed with lectin conjugates. J. Histochem. Cytochem.35, 55–65 (1987). ArticleCASPubMed Google Scholar
Alroy, J., Goyal, V. & Warren, C.D. Lectin histochemistry of gangliosidosis. I. Neural tissue in four mammalian species. Acta. Neuropathol.76, 109–114 (1988). ArticleCASPubMed Google Scholar
Grunwald, I.C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat. Neurosci.7, 33–40 (2004). ArticleCASPubMed Google Scholar
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol.1, 4 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, H.U., Chen, Z.F. & Anderson, D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell93, 741–753 (1998). ArticleCASPubMed Google Scholar
Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D.M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol.163, 1801–1815 (2003). ArticlePubMedPubMed Central Google Scholar